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Subdivision surfaces are popular in animation as a way of smoothing coarse control

meshes. On the other hand, the Computer-Aided Design (CAD) industry typically prefers

the simplicity and predictability of NURBS when constructing high-quality surfaces

for the manufacture of cars and planes. Since a single NURBS patch is capable only of

modeling the topologies of planes, cylinders, and torii, it is complex to use a NURBS

atlas to construct a surface of arbitrary topology that is curvature-continuous everywhere.

While popular subdivision algorithms of low parametric degree, like Catmull-Clark

and Loop subdivision, are not inherently restricted in topology, they suffer from shape

artifacts at so-called “extraordinary vertices”. This makes them unattractive for CAD.

Subdivision theory requires a (bi)degree of at least 6 in order for stationary subdivision

to be non-trivially curvature-continuous and mitigate some of these shape artifacts.

We circumvent this restriction by designing a curvature-continuous non-stationary

bicubic subdivision algorithm which has the implementational simplicity of stationary

algorithms. We hope techniques such as ours make subdivision surfaces more attractive for

high-quality constructions in CAD.
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CHAPTER 1
INTRODUCTION

From automobile and plane design to digital movie animation to video and computer

game character design, smooth curves and surfaces play a fundamental role in the design

of objects. Standard Computer-Aided Design (CAD) packages need to represent these

surfaces in an efficient form that is easy to manipulate algorithmically, and intuitive for

the user to mold into the desired shape. Additionally, such surface representations should

be easy to visualize and render onto the screen.

Smooth surface representations in CAD packages can be largely classified into two

categories: implicit and parametric. Implicit surfaces are defined in terms of zero-sets. For

example, x2 + y2 + z2 − 1 = 0 is the implicit representation of the unit sphere. While this

representation is useful to create basic shape and to apply boolean operations, visualizing

and rendering the surface typically requires solving a set of non-linear equations.

The alternative is to use parametric representations. In contrast to its implicit form, a

unit sphere can be represented using three equations in terms of two parameters s and t as

follows.

x(s, t) = cos(s) cos(t), y(s, t) = cos(s) sin(t), z(s, t) = sin(s)

As s is varied from 0 to π and t is varied from 0 to 2π, the points on the surface of the

Figure 1-1. A NURBS surface in a typical CAD package determined by a control net
consisting of all quads and internal vertices of valence 4.
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sphere are generated. A standard form of parametric representation is called Non-Uniform

Rational B-Splines, or NURBS for short. In this case, the x-, y-, and z-coordinates are

represented separately by piecewise rationals. The surface is defined by A) a control

mesh, or control net, which for NURBS is a quad mesh with each internal vertex having

valence 4, as shown in Figure 1-1; B) two knot sequences that determine the extent and

effect of the domain, one for each of the s and t parameters; and, C) weights associated

with each vertex in the control mesh. Even though boolean operations on NURBS are

not straightforward, NURBS are popular due to their intuitive manipulability and ease

of rendering. However, being based on quad-grid control structures, NURBS are capable

of representing only topological planes, cylinders, or torii. While the theory of NURBS

will not be discussed, a special case of it is important in this study: the uniform B-spline,

with uniformly spaced knots and all weights 1. Surfaces in B-spline form can be converted

directly to closed form, which is useful for analysis. Alternatively, the surface can be

defined via an iterative mesh refinement algorithm, which is easier to generalize. Chapter

2 discusses uniform bi-degree-3 splines in greater detail.

Table 1-1. Various mesh refinement algorithms (not comprehensive). Quad/triangle is
only C1 over certain edges and isolated points. Except for TURBS, all
produced surfaces are generically only C1 at isolated points. The last column
indicates whether or not the algorithm interpolates its control points.

Year Algorithm Smooth Degree Basis Interp.
1978 Catmull-Clark [Catmull and Clark, 1978] C2 bi-3 2 no
1978 Doo-Sabin [Doo and Sabin, 1978] C2 bi-2 2 no
1987 Loop [Loop, 1987] C2 4 △ no
1990 Butterfly [Dyn et al., 1990] C1 N/A △ yes
1996 Kobbelt [Kobbelt, 1996] C1 N/A 2 yes
1997 Simplest [Peters and Reif, 1997] C1 2 2 no
1998 TURBS [Reif, 1998] Ck bi-(2k + 2) 2 no

2000
√

3 [Kobbelt, 2000] C2 N/A △ no
2001 4–8 [Velho and Zorin, 2001] C4 6 2 no
2001 Circle preserving [Morin et al., 2001] C2 3 & trig. 2 no
2002 Ternary triangle [Loop, 2002b] C4 4 △ no
2003 Quad/triangle [Stam and Loop, 2003] C2 bi-3, 4 △, 2 no
2004 4–3 [Peters and Shiue, 2004] C2 4 △, 2 no

13



To address the inherent limitations of NURBS, subdivision surfaces were introduced

simultaneously by Catmull and Clark [1978] and Doo and Sabin [1978]. The two

subdivision surface algorithms are generalizations of B-spline iterative mesh refinement

rules, supporting arbitrary connectivity and manifold topology. These rules specify where

points are added; how the positions of these points are computed; and how the mesh is

reconnected. After an infinite iterative application of these subdivision rules, the mesh

converges to a limit surface. Some subdivision algorithms were created specifically for

triangular meshes, whereas others were created for quad meshes. Some were created

specifically to interpolate the vertices of the control net. Some were designed for tangent

continuity (C1), and others for curvature continuity (C2). Table 1-1 summarizes several

well-known subdivision algorithms, and is by no means complete. The surface quality of

various C2 algorithms listed is deficient at certain isolated points, called extraordinary

points, where they are only C1. What is considered to be an extraordinary point depends

on the details of each algorithm. Section 2.2, for instance, will define the extraordinary

point for Catmull-Clark surfaces and describe the surface behavior in its neighborhood.

The literature on the analysis techniques is enumerated at the end of Section 2.2.4.

Various surface construction algorithms were invented or adapted for applicability or

quality. For example, quad/triangle subdivision mentioned in Table 1-1 is a combination

of Catmull-Clark and Loop subdivisions applied to the quad and triangular portions

of the mesh separately. New rules were developed for the boundary between the quad

and triangle meshes, and the behavior of the surface along those edges is only C1.

Since Catmull-Clark by itself was designed for quads and has undesirable shape on

triangle meshes, its combination with Loop’s algorithm improves overall surface quality

and the applicability of the subdivision algorithm. Addressing surfaces of revolution,

Morin et al. [2001] designed a subdivision algorithm capable of reproducing circles, which

polynomial algorithms cannot do. This technique reproduces cubic polynomials, circles,

and hyperbolic functions depending on a tension parameter. By tensoring the algorithm

14



on a quad mesh, they obtained a surface that is C2 except at extraordinary points, where

it is C1. While most subdivision algorithms approximately quadruple the number of points

in the mesh after every refinement, some are specifically designed to refine slowly: simplest

subdivision [Peters and Reif, 1997] and 4–8 subdivision [Velho and Zorin, 2001] quadruple

every two iterations;
√

3 subdivision [Kobbelt, 2000] increases 9-fold every two iterations.

Slowing the refinement gives greater control over the size of the refined mesh. This is

useful for rendering no more than is necessary.

Catmull-Clark and Loop subdivision, the most well-known subdivision algorithms

for quad and triangle meshes, respectively, are known to have unbounded curvature in

the vicinity of the extraordinary point. Many attempts have been made to improve upon

them. Sabin [1991] re-tuned Catmull-Clark so that it yielded surfaces with bounded

curvature. Augsdörfer et al. [2006] went a step further to minimize Gaussian curvature

variation within the space of bounded curvature algorithms. Various modifications have

been made to Loop subdivision to support curvature continuity, albeit with a local flat

spot with zero curvature [Prautzsch and Umlauf, 1998, 2000]; bounded curvature with the

surface lying within the convex hull of the control points [Loop, 2002a,b]; and, curvature

control [Ginkel and Umlauf, 2006]. Umlauf [2005] summarized many of these re-tuning

techniques.

Notable constructions that support arbitrary degree of smoothness even at the

extraordinary point include free-form splines [Prautzsch, 1997] and TURBS [Reif,

1998], both of which require degree bi-(2k + 2) to create an everywhere-Ck surface.

Ying and Zorin [2004] created an everywhere-C∞ surface using exponential blending

functions between polynomial patches. More recent work by Karčiauskas and Peters

[2007b, 2008] introduced the concept of guided subdivision also capable of achieving

arbitrary continuity. For C2, they employ an infinite sequence of bi-degree-6 spline surface

rings to approximate a C2 “guide surface” of good quality. In [Karčiauskas and Peters,

2007d], they employ sequences of bicubic spline rings containing an exponentially-increasing

15



number of polynomials to reproduce the guide surface’s second order behavior at the

extraordinary point in spite of the low degree of the overall construction. Our construction

implicitly also uses bicubic spline surface rings of exponentially-increasing number of

polynomials to achieve curvature continuity; however, this increase comes about naturally

in our algorithm.

A variety of other approaches have been used to improve shape near extraordinary

points. Peters [2000] approximated Catmull-Clark surfaces with a finite number of bicubic

patches that join tangent-continuously. As an alternative, Peters [2002] suggested a C2

construction of degree (3, 5). Both these techniques still suffer from shape problems due

to the low degree of the constructions. Loop and Schaefer [2008] achieved curvature

continuity for quad meshes using patches of bi-degree 7 with shape optimization for the

free parameters. Karčiauskas and Peters [2007c] used the concepts of guided subdivision to

construct a C2 surface with a finite number of bi-degree-6 patches. [Levin, 2006] perturbed

Catmull-Clark surfaces using polynomial-square-root blending functions between local

polynomial patches. In the same vein, Zorin [2006] perturbed Loop subdivision surfaces to

be C2 using a blending function that was itself a subdivision surface.

A B

Figure 1-2. Polar configuration on A) finger tips and B) the top of the mushroom.

Many of the surface construction algorithms mentioned above are complex or

suffer in shape near high-valence vertices. Karčiauskas and Peters [2007] recognized

one commonly-occurring configuration of high valence in quad-dominant meshes: the

polar configuration, which is the focus of this study. The polar configuration consists

16



of a high-valence central vertex – the polar vertex – in the middle of a triangle fan

surrounded by a quad grid neighborhood. This configuration occurs naturally at the

ends of elongated objects like tips of fingers, and in the latitude/longitude connectivity

of the sphere (Figure 1-2), and it is structurally far simpler than the neighborhood of

Catmull-Clark extraordinary points, as we show in Section 2. Catmull-Clark on polar

configurations results in macroscopic oscillations in the polar neighborhood. Treating polar

as a special case gives good results, even when the central valence is very high (Figure

2-6). Karčiauskas et al. [2006] adapted guided subdivision to polar configuration to create

C2 polar jet subdivision, which employs a control net structure to make spline surface

rings of degree (6, 5). Karčiauskas and Peters [2007a] introduced very simple bicubic

C1 subdivision algorithm with bounded curvature, which was subsequently adapted by

Myles et al. [2008] to be compatible with Catmull-Clark subdivision. Myles et al. [2008]

also offered a C1 bicubic NURBS patch construction with bounded curvature to cover the

neighborhood of the polar configuration.

There is no accepted mathematical definition of surface quality. For simulation, it is

often useful to have well-defined curvatures. Additionally, the introduction of curvature

continuity tends to improve visual quality of the modeled surface. Subdivision theory

[Peters and Reif, 2008] states that Catmull-Clark subdivision cannot be re-tuned to be

non-trivially C2 at the extraordinary point with degree less than bi-6. In this study,

we sidestep the assumptions underlying this theorem to take advantage of the natural

subdivision structure of polar configurations to create a C2 algorithm that has degree only

bi-3. We also show that our simple subdivision algorithm yields surfaces with high visual

quality and good curvature distribution.
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CHAPTER 2
GENERALIZATIONS OF UNIFORM BICUBIC SPLINES

2.1 Uniform B-Spline Representation

We introduce notation and definitions to simplify the discussion.

• For integers n,
∑n

h is an alternative notation for
∑n−1

h=0. For sets S,
∑S

η is an
alternative notation for

∑

η∈S .

• Z is the set of integers, and Zn is the integers modulo n. R is the set of reals. R1 isR modulo 1. Zn is the strictly increasing sequence of integers in Zn.

• An affine combination is a linear combination where the weights add to 1. A convex
combination is an affine combination where the weights are positive.

2.1.1 Univariate

A detailed treatment of the B-spline form can be found in [Prautzsch et al., 2002].

A piecewise polynomial in B-spline form is defined by a sequence of control points that

defines the shape, and a uniformly-spaced knot sequence that defines the domain. The

piecewise linear interpolant for a given ordering of control points is known as the control

polygon (see Figure 2-1). A univariate cubic (i.e. degree 3) uniform spline f : R → R
with n control points b := [b0, b1, . . . , bn−1] requires n + 4 uniformly-spaced knots

t := [t0, t1, . . . , tn+3] and is defined by

f(t) :=

n∑

i

biNi(t),

where the n cubic B-spline bases Ni(t) are

Ni(t) :=
1

6







ui(t)
3 if t ∈ [ti, ti+1]

−3ui+1(t)
3 + 3ui+1(t)

2 + 3ui+1(t) + 1 if t ∈ [ti+1, ti+2]

3ui+2(t)
3 − 6ui+2(t)

2 + 4 if t ∈ [ti+2, ti+3]

(1 − ui+3(t))
3 if t ∈ [ti+3, ti+4]

0 otherwise

ui(t) :=
t − ti

ti+1 − ti
.

(2–1)

While the spline is technically defined on all of R, it is restricted for practical purposes
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b4−1

0

1

2

3

A B

Figure 2-1. Univariate uniform cubic spline. A) A cubic spline f(t) with control points
b = [1, 3, 1, 2,−1] (red) and knots t = [−1, 0, 1, 2, 3, 4, 5, 6, 7] is the sum of
uniform B-spline bases scaled by their respective control points (blue, green,
magenta, cyan). B) An equivalent definition using iterative control polygon
refinement.

to t ∈ [t3, tn], as in Figure 2-1, where at least four non-zero bases overlap. The basis

functions are non-negative and sum to one in this interval, implying that each point on the

spline is a convex combination of the control points. This yields two important geometric

properties of B-splines.

• Affine invariance: Applying an affine transformation to the control polyhedron
applies it to the transformation spline as well.

• Convex hull property: A parametric curve in B-spline form always lies in the
convex hull of its control points.

Uniform cubic B-splines also have built-in second-order continuity so that adjacent

polynomial pieces join C2.

The t-coordinate associated with each control point bi is called the Greville abscissa

t∗i and is defined, in general, via t∗i := 1
d

∑d
j ti+j+1, where d is the degree of the spline. For

uniform cubics, this simplifies to t∗i = ti+2. It will be useful later to index control points by

their Greville abscissae when the knot sequence is chosen so that t∗i = i
n
. To this end, we

define the operator G

Gb := {t∗i }i∈Zn
, (2–2)
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and the bracketed fractional indexing notation.

b[t∗i ]
= b[ i

n ] := bi, N
[t∗i ]

(t) = N
[ i

n ]
(t) := Ni(t). (2–3)

Using this notation, our spline is equivalently defined as

f(t) :=
Gb∑

η

b[η]N[η](t).

One can similarly define periodic uniform cubics f : R1 → R, requiring the knot

sequence to lie within R1. Since the knot sequence cycles around, we need only specify n

knots – e.g. t = 1
n
Zn – and assume by convention that the first control point has Greville

abscissa 0.

The B-spline form can alternatively be defined via a control polygon refinement

procedure as illustrated in Figure 2-1B. The once-subdivided control points b1 :=

[b1
1, b

1
2, . . . , b

1
2n−3] are computed from the original control points b0 := [b0

0, b
0
1, . . . , b

0
n−1] via

the following equations.

b1
2i =

1

8
b0
i−1 +

6

8
b0
i +

1

8
b0
i+1, b1

2i+1 =
1

2
b0
i +

1

2
b0
i+1 (2–4)

Applying this refinement procedure ad-infinitum converges to the spline curve.

2.1.2 Tensor-product bivariate

The B-spline bases can be easily generalized to surfaces by tensoring the univariate

bases, so that the bi-3 (i.e. bicubic, bi-degree-3, or degree (3,3)), surface f(s, t) is defined

as

f(s, t) :=
ns∑

i

nt∑

j

bijN
s
i (s)N t

j (t),

where the spline is defined by the ns × nt control mesh b of control points, and two knot

sequences s := [s0, s1, . . . , sn+3] and t := [t0, t1, . . . , tn+3] which define the B-spline bases

N s
i (s) and N t

j (t), respectively. The Greville abscissa of a control point bij is a pair (s∗i , t
∗
j)
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instead of a single real. Figure 1-1 illustrates such a uniform bi-3 spline in a typical CAD

environment.

A B

Figure 2-2. Generalizations of mesh connectivity. A) A quad-only generalization to mesh
connectivity allows vertex valences other than 4. B) Polar mesh connectivity
arrives naturally when many control lines along the same tensor direction meet
at a singularity.

A C

B

Figure 2-3. Commutativity of regular B-spline subdivision. Bi-3 spline subdivision A) in
one direction followed by B) the other, or C) simultaneous refinement as in
Catmull-Clark.

The surface can also be defined using a mesh refinement procedure. The control mesh

may be subdivided in either tensored direction independently, to yield the same surface

in closed form. Figure 2-3 illustrates this procedure on a parametric spline, where the

mesh is (A) refined strictly in one direction twice followed by (B) the other one twice.

Alternatively, one can tensor the subdivision masks so that one may (C) directly subdivide

in both directions twice, converting each original quad into four refined ones after every

tensored subdivision.
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2.2 Catmull-Clark and Bi-3 Polar Subdivision

2.2.1 Generalizations of quad grid meshes

Quad-grid control meshes are limited to representing the topology of planes, cylinders,

and torii. Generalizing the mesh connectivity to allow arbitrary-valence vertices and

polar configurations (Figure 2-2) admits meshes encoding arbitrary surface topology. The

B-spline quad-grid connectivity is called the ordinary case. The extraordinary case consists

of a quad neighborhood with an extraordinary vertex of valence 6= 4, and its neighboring

quads are called extraordinary quads. The polar configuration, as defined previously,

consists of a central polar vertex of arbitrary valence ≥ 3, surrounded by a triangle fan

within rings of regular quads (Figure 2-2B).

While the utility of arbitrary valences may be obvious, an appreciation for polar

configurations requires more observation. Figure 1-2 already demonstrates their utility on

certain meshes, but we will justify treating polar configurations specially when examining

subdivision surfaces in the following section.

2.2.2 Subdivision as refinement operations

The Catmull-Clark subdivision algorithm Catmull and Clark [1978] takes an arbitrary

input mesh and subdivides it to produce a denser mesh on which the algorithm can again

be applied. The limit surface corresponding to this sequence of evermore refined meshes is

called the Catmull-Clark (limit) surface. For simplicity of discussion, we will assume closed

meshes – i.e. those with no boundaries.

Figure 2-4. One step of Catmull-Clark refinement converts a mesh to all quads.

An application of the Catmull-Clark subdivision procedure converts every face into

multiple quads by:

1. splitting every edge into two by the introduction of a new vertex (edge vertex),
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2. introducing a new vertex at the middle of the face (face vertex), and

3. connecting the face vertices to their neighboring edge vertices.

See Figure 2-4 for the end result on three different polygons. Subdivision splits a face of

size n into n quads and creates an n-valent vertex at the center. Since the mesh facets are

four-sided after one refinement, all subsequent subdivisions quadruple the size of the mesh.

The new points are affine combinations of their neighbors and the old vertices are modified

using affine combinations of their old neighbors as well. Catmull-Clark subdivision,

demonstrated in Figure 2-5A, can hence be thought of (and was originally derived) as a

generalization of Figure 2-3C, where both directions of the mesh are subdivided in a single

step.

A

B

radial circular 3×

Figure 2-5. A) Catmull-Clark subdivision splits every quad directly into four, using
special rules in the vicinity of extraordinary vertices, like the 3-valent ones on
the cube. B) Bi-3 polar subdivision refines strictly in the radial direction the
desired number of times (thrice here), and finally in the circular direction to
achieve the same granularity as Catmull-Clark.

The exact refinement weights are not relevant in this discussion, and are omitted.

However, it is worth noting that these weights depend only on the local connectivity of the

control mesh. The weights are said to be stationary. Additionally, the connectivity is also

stationary, in that the local connectivity around the extraordinary vertex has the same
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structure as before – a valence n vertex surrounded by quads with all other valences being

4. Subdivision schemes with stationary weights and connectivity are themselves said to be

stationary.

Bi-3 polar subdivision [Karčiauskas and Peters, 2007a; Myles et al., 2008] can be

thought of as generalizing Figure 2-3(A-B), where subdivisions happen strictly in one

direction followed by the other one. We refer to the direction along the control lines

emanating radially from the polar vertex as the radial direction, and the periodic direction

as the circular direction. The limit surface is defined in this case by applying subdivision

in the radial direction ad infinitum, followed by subdividing in the circular direction.

However, for the purposes of approximating the limit surface with the mesh, we subdivide

only a finite number of times in the radial direction before we switch to the circular

direction as illustrated in Figure 2-5B. Bi-3 polar subdivision is stationary, and its

subdivision weights are irrelevant for this discussion. We will instead detail and analyze a

slightly more complex version of this algorithm in Section 3.

A B C

Figure 2-6. Even when the polar configuration A) is convex, the Catmull-Clark
subdivision surface B) has unseemly ripples, while bi-3 polar subdivision C)
yields predictable surfaces.

As Figure 2-6 demonstrates, applying Catmull-Clark to a convex polar configuration

results in macroscopic ripples that are clearly not specified by the control nets. However,

treating polar configurations specially yields predictable surfaces with good behavior

despite a high valence polar vertex. This justifies considering the polar configuration as a

separate case.
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2.2.3 Subdivision as piecewise polynomials

While uniform splines can be written out in closed form, Catmull-Clark and bi-3

polar subdivision surfaces are not as straightforward. As Figure 2-7 demonstrates, at

any refinement level, the limit surface near extraordinary vertices and polar vertices

is not directly available. However, subdividing once reveals a regular ring of quads,

which undergo uniform bi-3 subdivision in subsequent refinements. The surface defined

by this ring can hence be written out in closed form. Therefore, near extraordinary

vertices and polar vertices, the surface consists of an infinite sequence of spline surface

rings approaching a limit point. In the Catmull-Clark case, we call this limit point an

extraordinary point, while in the polar case, it is called a pole.

A
?
?

?
?

?
? ?

??
?

...
?

B ...? ?

? ?

?

?

? ?

? ?

?

?
?

Figure 2-7. The infinite sequence of spline rings of A) Catmull-Clark and B) bi-3 polar
subdivision. Each subdivision reveals additional rings of regular quads,
representing bi-3 polynomial patches, around the extraordinary point.

Observe also from Figure 2-7 that the boundary of each spline ring around a

Catmull-Clark extraordinary point contains as many corners as the valence of the

extraordinary vertex. As the extraordinary valence approaches infinity, the boundary

consists of countably infinite corners. On the other hand, in the polar case, the boundary

is smooth: in a perfectly symmetric case, the boundary approaches a circle as the valence

approaches infinity. We exploit this behavior of the polar configuration in the new

subdivision algorithms we design.
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2.2.4 Behavior around and at the extraordinary points

Since the infinite sequence of spline rings defining the surface near extraordinary

points and poles are themselves C2, the surface is C2 away from these vertices. The

behavior at the extraordinary points and poles requires a more advanced analysis of these

spline sequences. Even though subdivision surfaces have been around for 30 years, only

within the last 15 years were the mathematical tools for higher order analysis developed to

maturity. In a landmark paper, Reif [1995] set a general framework to analyze arbitrary

subdivision surface algorithms near and at the extraordinary point. Subsequent work

by Prautzsch and Reif developed sufficient conditions and polynomial degrees for

Ck continuity by examining the infinite sequence of spline rings [Prautzsch and Reif,

1999b,a]. Zorin [2000] instead derived conditions based on the analysis of certain

“universal” surfaces that are determined by the subdivision scheme of interest. Numerous

papers have analyzed the behavior of subdivision surfaces around extraordinary points

[Peters and Umlauf, 2000; Sabin et al., 2003; Peters and Reif, 2004; Karčiauskas et al.,

2004; Reif and Peters, 2005]. The recent book [Peters and Reif, 2008] summarizes and

extends the core results of the papers above on the theory of subdivision.

Stam [1998] derived a constant-time algorithm for the evaluation of points and

derivatives at parameter values arbitrarily close to the extraordinary point, and

Boier-Martin and Zorin [2004] showed that a more canonical parameterization than

the one used by Stam was needed to be able to always compute the derivatives at the

extraordinary point.

It is now well-known that Catmull-Clark surfaces can have unbounded curva-

ture near extraordinary points of valence not equal to 4 even though they are C1

[Peters and Umlauf, 2000]. On the other hand, bi-3 polar subdivision [Karčiauskas and Peters,

2007a; Myles et al., 2008] was derived with bounded curvature in mind and tends to give

predictable shapes in its areas of applicability. The purpose of this study is to go beyond

bounded curvature to C2, while still having a simple subdivision algorithm.
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CHAPTER 3
RADIAL TAYLOR SUBDIVISION (RTS)

In this chapter, we will analyze radial Taylor subdivision, a slightly more complex

variant of bi-3 polar subdivision that also has bounded curvature at the pole. Trivial

modifications of radial Taylor subdivision will yield subdivision algorithms that are C2 at

the pole as well.

3.1 Notation and Labeling

The underlying data structure on which we operate is the polar configuration which

consists of a central triangle fan surrounded by rings of ordinary quads (see Figure 3-1).

The central vertex of the triangle fan is called the polar vertex. The i-link (i = 0, 1, 2, . . .)

of a polar configuration is the circular chain of vertices that is i edges away from the polar

vertex. The 0-link consists of only the polar vertex itself. The i-ring (i = 0, 1, 2, . . .)

consists of all the vertices that are no more than i edges away from the polar vertex.

While the subdivision algorithms use special rules only in the 1-ring of the polar vertex,

we assume for analysis that a polar configuration constitutes the 5-ring of the polar vertex.

As illustrated in Figure 3-1, the polar configuration is denoted by q and its valence

(i.e. the valence of its polar vertex) is n. qi := [qi,0,qi,1, . . . ,qi,n−1]
T denotes the i-link

of the polar configuration, and qij is the jth control point (rotating counter-clockwise,

modulo n) on this i-link. For j ∈ Zn, the j-spoke is the vector q∗,j := [q0,0,q1,0, . . . ,q5,0]
T.

Counting the polar vertex q0j = q00 repeatedly, q has 6n vertices. We can enumerate all

q00

q0j
q1j q2j q3j q4j q5j

Figure 3-1. A polar configuration consists of a total of 6n control points defining the
5-ring of a polar vertex (q00, which is counted n times) of valence n.
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ττ

ττ

rr

rr

00 1

11

22 44

(G0q
0) (r, τ) (G1q

1) (r, τ)

Figure 3-2. The m-times subdivided polar configuration qm defines a cubic spline ring
(Gmqm) (r, τ) (orange) via (3–1). The radial parameter shrinks by half after
each subdivision so that r ∈ [2, 4] for G0q

0(r, τ) and r ∈ [1, 2] for (G1q
1) (r, τ).

these vertices as the column vector

q := [q0,0,q1,0, . . . ,q5,0, q0,1,q1,1, . . . ,q5,1, . . . , q0,n−1,q1,n−1, . . . ,q5,n−1]
T

We will extract the spline rings described in Section 2.2.3 in such a way that each

control point qij has the Greville abscissa j
n

in the circular direction. This allows us

to simplify generalizations to infinite valences and non-stationary valence by using the

valence-independent fractional indexing notation introduced in (2–3): qi,[ j

n ] := qij . Since j

in qij is modulo n, τ in qi,[τ ] is modulo 1.

While in practice, each mesh vertex lies in R3, our analysis is the same as if qij ∈ R
since subdivision works on each coordinate independently. qm is the polar configuration

after m subdivisions. Omission of the superscript refers to the initial data: q := q0. nm is

the valence of qm, and n := n0.

The limit surface of the subdivision procedure is defined by an infinite sequence of

spline rings that form a decomposition of the surface (see Figures 2-7 and 3-2). Each

spline ring is the periodic uniform spline defined by the five outer links of qm. More

precisely,
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• (radial)
∗

N
(m)
i (r) is the ith cubic B-spline basis with knots λm[−1, 0, 1, 2, 3, 4, 5, 6, 7],

where λ := 1
2
; and

• (circular) for n ≥ 3,
◦

N
(n)
j (τ) is the jth uniform periodic cubic B-spline basis with

knots 1
n
Zn.

The spline ring corresponding to qm is a map Gmqm : [2λm, 4λm] × R1 → R, defined by

the B-spline control points qm
ij , with i ∈ {1, 2, 3, 4, 5} and j ∈ Zn such that

(Gmqm) (r, τ) :=
5∑

i=1

n∑

j

qm
ij

∗
N

(m)
i (r)

◦
N

(nm)
j (τ), (3–1)

where λ := 1
2
, indicating that the radial parameter of each spline ring shrinks by half after

every subdivision as illustrated in Figure 3-2. As nm → ∞, the i-link converges to a curve

qm
i,[τ ] with τ ∈ R1, and Gmqm simplifies to

(Gmqm) (r, τ) :=
5∑

i=1

∫R1

qm
i,[τ ]

∗
N

(m)
i (r)dτ. (3–2)

Observe also that Gmqm is linear with respect to qm.

The polar limit surface x : [0, 4] ×R1 → R (R3 in practice) in polar parameterization

is defined piecewise in terms of these rings so that

x(r, τ)
∣
∣
r∈[2λm,4λm]

:= (Gmqm) (r, τ). (3–3)

and x(0, τ) is the unique limit point, called the pole. The difference between our polar

parameterization and the conventional one is that our circular direction is parameterized

by R1 instead of R2π for notational convenience. The operator L converts a polar

configuration q to its parameterized limit surface: L(q) := x.

We propose three alternative constructions for x in this study that build upon

each other, and show that the latter two are curvature continuous at the pole. To avoid

ambiguity, we will superscript x and L by the name of the subdivision algorithm they

represent – i.e. LRTS(q) := xRTS as defined in Section 3.2.
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The operator Ĝm is a simpler version of the operator Gm that works strictly in the

radial direction. For some vector u ∈ R6, Ĝmu : [2λm, 4λm] → R is the cubic spline defined

by the B-spline control points ui, with i ∈ {1, 2, 3, 4, 5}:

(

Ĝmu
)

(r) :=
5∑

i=1

ui
∗

N
(m)
i (r). (3–4)

Like Gm, Ĝm is also linear with respect to its parameter u.

To simplify notation, we additionally define

cτ := cos (2πτ) and sτ := sin (2πτ) .

The fraction τ can also be represented as a ratio so that

cj:n := cos

(

2π
j

n

)

and sj:n := sin

(

2π
j

n

)

.

3.2 Radial Taylor Subdivision (RTS) Definition

Definition 1 (Radial Taylor subdivision). Radial Taylor subdivision, or RTS, refines an

n-valent polar configuration qm to the n-valent polar configuration qm+1 defined by

qm+1
00 := (1 − a)qm

00 +
a
n

n∑

h

qm
1h (3–5)

qm+1
1j := (1 − b̂0)q

m
00 +

n∑

h

bh−jq
m
1h (3–6)

qm+1
2j := 
qm

1j + (1 − 
)qm
2j +

n∑

h

dh−jq
m
1h (3–7)

qm+1
3j :=

1

2
qm

1j +
1

2
qm

2j qm+1
4j :=

1

8
qm

1j +
6

8
qm

2j +
1

8
qm

3j

qm+1
5j :=

1

2
qm

2j +
1

2
qm

3j (3–8)

where bj :=
1

n

(b̂0 + cj:n +
1

2
c2j:n +

1

8
c3j:n

)

, (3–9)b̂0 :=
1

2
, a := b̂0 −

1

4
, 
 :=

11

12
, dj := − 1

6n
cj:n. (3–10)
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...

...

...

...

...

...

1−a a/n

a/na/n

1−b̂0 b0

b1bn−1


+d0

d1dn−1

1−
 1
2

1
2

Figure 3-3. Radial Taylor subdivision rules. These masks show how to compute each
vertex (•) on the refined mesh (light gray, dashed) based on the old mesh (dark
gray, vertices as ◦). The special radial subdivision rules for RTS are isolated to
the triangle fan at the center of the polar configuration. Further out, standard
cubic rules are applied.

The limit surface is parameterized by xRTS, defined by the spline rings Gmqm defined in

(3–3).

The subdivision rules of RTS are illustrated in Figure 3-3. It follows by definition

that nm = n. Since qm+1
3j , qm+1

4j , qm+1
5j are computed via uniform cubic spline subdivision,

Gmqm defines a subset of xRTS. The refinement weights for bi-3 polar subdivision are

identical to those of RTS, except that it uses uniform cubic subdivision for qm+1
2j . As

was the case for bi-3 polar subdivision [Karčiauskas and Peters, 2007a], we assume, that

the polar valence n ≥ 5. This assumption is not applicable to the other two subdivision

algorithms, RTS∞ and C2PS, that we define later.

RTS can more compactly be written in terms of matrix multiplication:

qm+1 = Aqm, (3–11)

where A is a 6n × 6n matrix. Since the subdivision algorithm is rotationally symmetric

around the polar vertex, our enumeration of the control points in qm allows us to write A
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in block circulant form, distributing evenly the contribution of the polar vertex amongst

its n different labels qm
0j , j ∈ Zn.

A :=












A0 A1 · · · An−1

An−1 A0 · · · An−2

...
. . .

...

A1 · · · An−1 A0












where

A0 :=







(1−a)/n a/n 0 0 0 0

(1−b̂0)/n b0 0 0 0 0
0 
+d0 1−
 0 0 0
0 1/2 1/2 0 0 0
0 1/8 3/4 1/8 0 0
0 0 1/2 1/2 0 0







, Aj :=






(1−a)/n a/n 0 0 0 0

(1−b̂0)/n bj 0 0 0 0
0 dj 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




 , for j 6= 0.

Only the first 3 × 3 block of the subdivision matrix has non-standard weights, while the

rest is merely the application of uniform cubic spline subdivision in the radial direction.

Nevertheless, the entire 6 × 6 matrix is required to define the spline rings for analysis.

3.3 Analysis

Using tools summarized in [Peters and Reif, 2008], we analyze RTS the subdivision

limit by examining the limit

lim
m→∞

Gm(qm) = lim
m→∞

Gm(Amq) (3–12)

of the sequence of spline rings defining xRTS near the pole. Section 3.3.1 examines the

spectrum of A that motivates the choice of its entries. Section 3.3.2 then reformulates RTS

in eigenspace to derive, in Section 3.3.3, an expansion of the dominant terms at the pole

and conclude that in the limit n → ∞, the limit surface is C2 at the pole.

3.3.1 Spectral analysis of RTS

The subdivision algorithm (not necessarily the surface) is rotationally symmetric and

periodic such that qm
i,j+n = qm

ij . This suggests that a Fourier transform in the circular

direction may factor out the radial and circular behavior of the subdivision algorithm

to aid our analysis. In other words, since the subdivision matrix A is block circulant
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due to the rotational symmetry of RTS, we can diagonalize it using the discrete Fourier

transform. The complex Fourier block matrix

F := (ω−jk
n I)j,k∈Zn

=















I I I · · · I

I ω−1
n I ω−2

n I · · · ω1
nI

I ω−2
n I ω−4

n I · · · ω2
nI

...
...

...
. . .

...

I ω1
nI ω2

nI · · · ω−1
n I















(3–13)

where ω := exp
(

2π
√
−1

n

)

and I is the 6× 6 identity matrix. It can easily be verified that F

is almost orthogonal:

F−1 =
1

n
F∗ =

1

n
(ωjk

n I)j,k∈Zn
,

where F∗ is the Hermitian adjoint (conjugate transpose) of F . An important property

that is exploited later is that for k > 0, the kth and n − kth block columns of F−1 are

complex conjugates of each other. We can now block diagonalize A via

Â := FAF−1 =












Â0 0 · · · 0

0 Â1 0

...
. . .

...

0 · · · 0 Ân−1












, Âk :=

n∑

j

ω−jkAj ,

where

Â0 =







1−a a 0 0 0 0

1−b̂0 b̂0 0 0 0 0

0 
+d̂0 1−
 0 0 0
0 1/2 1/2 0 0 0
0 1/8 3/4 1/8 0 0
0 0 1/2 1/2 0 0







, Âk = Ân−k =







0 0 0 0 0 0
0 b̂k 0 0 0 0

0 
+d̂k 1−
 0 0 0
0 1/2 1/2 0 0 0
0 1/8 3/4 1/8 0 0
0 0 1/2 1/2 0 0





b̂k :=

n∑

j

ω−jkbj, d̂k :=

n∑

j

ω−jkdj.

Note that this re-definition of b̂0 is consistent with its usage in the definition (3–9) of bj.

Consequently,
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b̂k =







1
2

if k = 0

1
2

if k ∈ {1, n − 1}
1
4

if k ∈ {2, n − 2}
1
16

if k ∈ {3, n − 3}

0 otherwise

and d̂k =







− 1
12

if k ∈ {1, n − 1}

0 otherwise

Âk is called the kth Fourier block of Â and encodes the action of RTS on the kth frequency

mode when going around the polar vertex. For instance, Â0 alone determines the effect

of RTS when each control point qij is independent of the circular index j. This includes

polar configurations sampled from a constant function or a parabola.

Since the eigenvalues and eigenvectors of A and Â are closely related by the Fourier

transform, we use a similar notation for spectral analysis.

• ℓ0, ℓ1, . . . , ℓ6n−1 are the eigenvalues of the subdivision matrix A (and also Â) in
non-increasing order of magnitude: |ℓ0| ≥ |ℓ1| ≥ . . . ≥ |ℓ6n−1|. Equal eigenvalues are
listed once for each multiplicity and treated separately.

• αk is the index of Fourier block Âαk
contributing eigenvalue ℓk, chosen so that

ℓk1 = ℓk2 and k1 < k2 imply αk1 < αk2.

• vk (respectively, wk) is the 6n-dimensional right (respectively, left) real eigenvector
of A corresponding to eigenvalue ℓk.

• v̂k (respectively, ŵk) is the 6-dimensional right (respectively, left) eigenvector of
the Fourier block Âαk

, corresponding to eigenvalue ℓk. v̂k is also called a radial
eigenvector.

We abuse the caret (ˆ) notation to represent objects or functions in the Fourier domain,

even if they do not directly arrive via a Fourier transform. For example, as seen shortly in

(3–14), the operator Ĝm (see (3–4)) defines the radial limit curve of v̂k in a manner similar

to Gm defining the limit surface x.

As summarized in Table 3-1, we have

(ℓ0, ℓ1, ℓ2, ℓ3, ℓ4, ℓ5) = (1, λ, λ, µ, µ, µ)
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Table 3-1. The dominant spectral behavior of Â. The left (ŵk) and right (v̂k) eigenvectors
are normalized so that the related vectors wk and vk satisfy wT

k1
vk2 = δk1k2.

Fourier eigen-

k block (αk) value (ℓk) vector (right) (v̂T
k ) vector (left) (ŵT

k )
0 0 1 [1, 1, 1, 1, 1, 1] 1

3
[2, 1, 0, 0, 0, 0]

1 1 1/2 [0, 1, 2, 3, 4, 5] [0, 2, 0, 0, 0, 0]
2 n − 1 1/2 [0, 1, 2, 3, 4, 5] [0, 2, 0, 0, 0, 0]
3 0 1/4 1

3
[−1, 2, 11, 26, 47, 74] [−1, 1, 0, 0, 0, 0]

4 2 1/4 1
3
[0, 2, 11, 26, 47, 74] [0, 3, 0, 0, 0, 0]

5 n − 2 1/4 1
3
[0, 2, 11, 26, 47, 74] [0, 3, 0, 0, 0, 0]

with λ := 1
2

and µ := λ2 = 1
4
. The rest of the eigenvalues are real and positive with

magnitude strictly less than ℓ5. The eigenvalues ℓ0 = 1 and ℓ3 = µ are from Â0;

ℓ1 = ℓ2 = λ are from Â1 and Ân−1; and the final two ℓ4 = ℓ5 = µ are from Â2 and

Ân−2. In order for these five important Fourier blocks to exist, the valence n must be at

least 5, justifying this assumption.

Since A is an operation on polar configurations, the eigenvectors vk of A are also

polar configurations. The eigenspline eRTS
k : [0, 4] × R1 → R is the limit surface L(vk) of

these polar configurations. The radial eigenspline êk : [0, 4] → R is the limit curve of radial

eigenvector v̂k as defined by the decomposition

êk(r)
∣
∣
r∈[2λm,4λm]

:=
(

Ĝm

(

Âm
αk

v̂k

))

(r). (3–14)

Figure 3-4 illustrates the relationship, for example, between v3, v̂3, eRTS
3 , and ê3.

Let Λ := diag(ℓ0, ℓ1, . . . , ℓ6n−1) be a diagonal matrix of the eigenvalues of A

(respectively Â), and V̂ be a matrix whose columns enumerate the corresponding right

eigenvectors (of any scale) of Â, so that ÂV̂ = V̂ Λ. Then,

ÂV̂ = V̂ Λ

⇒ FAF−1V̂ = V̂ Λ ⇒ A(F−1V̂ ) = (F−1V̂ )
︸ ︷︷ ︸

VC:=

Λ

⇒ AVC = VCΛ, (3–15)
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A. n = 6 B. n → ∞
Figure 3-4. Eigenvector v3 is the n-valent polar configuration (black mesh/curves)

defining the eigenspline eRTS
3 (blue and red surface). The corresponding radial

eigenvector v̂3 (indicated by •) defines the radial eigenspline ê3 (blue and red
curve). When n → ∞, then ê3(r) = eRTS

3 (r, 0).

implying that the columns of VC are (complex) eigenvectors of A. Since the Fourier

blocks Âk and Ân−k are identical and the corresponding pairs of block columns of F−1 are

complex conjugate, eigenvalues from these Fourier blocks are associated via VC = F−1V̂

with pairs of complex conjugate eigenvectors of A. The real eigenvectors vk of A can hence

be computed as the real and imaginary portions of these complex eigenvectors:

(vk)ij := (v̂k)i opk

(
j

n

)

, opk(η) :=







cαkη if αk ≤ n/2

−sαkη otherwise
(3–16)

where k ∈ Z6n, i ∈ Z6, and j ∈ Zn. According to Table 3-1, (op0(η), op1(η), . . . , op5(η)) =

(1, cη, sη, 1, c2η, s2η) . The eigenspline eRTS
k inherits the tensored nature of vk.

Lemma 1. For any f : R → R, the operator Bn : f 7→ ∑n
j f
(

j
n

) ◦
N

(n)
j uses uniform

samples on a function f as the control points of a periodic spline. Then, the eigenspline

eRTS
k decomposes according to

eRTS
k (r, τ) = êk(r) Bnopk (τ) (3–17)
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Proof. For r ∈ [2λm, 4λm],

eRTS
k (r, τ)

(3–3)
= (Gmvm) (r, τ)

(3–1)
=

(3–11)

5∑

i=1

n∑

j

(Amv)ij

∗
N

(m)
i (r)

◦
N

(n)
j (τ)

=
5∑

i=1

n∑

j

ℓm
k vij

∗
N

(m)
i (r)

◦
N

(n)
j (τ)

(3–16)
=

5∑

i=1

n∑

j

ℓm
k (v̂k)i opk

(
j

n

)
∗

N
(m)
i (r)

◦
N

(n)
j (τ)

=

5∑

i=1

n∑

j

(

Âm
αk

(v̂k)
)

i
opk

(
j

n

)
∗

N
(m)
i (r)

◦
N

(n)
j (τ)

=

(
5∑

i=1

(

Âm
αk

(v̂k)
)

i

∗
N

(m)
i (r)

)(
n∑

j

opk

(
j

n

)
◦

N
(n)
j (τ)

)

(3–4)
=

(

Ĝm

(

Âm
αk

(v̂k)
))

(r) Bnopk (τ)

(3–14)
= êk(r) Bnopk (τ)

Lemma 1 shows that the block diagonalization factors the radial from the circular.

From this formulation, it is also obvious that eRTS
k is periodic in τ with a period of 1

αk
,

which is a direct consequence of v̂k having frequency mode αk. Eigensplines and radial

eigensplines also inherit the scaling property of eigenvectors, in that for r̄ = λr,

êk(λr)
∣
∣
r∈[2λm,4λm]

= êk(r̄)
∣
∣
r̄∈[2λm+1,4λm+1]

(3–14)
=

(

Ĝm+1

(

Âm+1
αk

v̂
))

(r̄) = ℓk

(

Ĝm+1

(

Âm
αk

v̂
))

(r̄)

= ℓk

(

Ĝm

(

Âm
αk

v̂
))

(r)
(3–14)
= ℓkêk(r)

∣
∣
r∈[2λm,4λm]

, (3–18)

implying that êk(λr) = ℓkêk(r), and, due to Lemma 1, that eRTS
k (λr, τ) = ℓke

RTS
k (r, τ).

With this scaling relationship, the first six radial eigensplines can be written out

explicitly. The subdivision matrix A was constructed to have the spectral behavior in
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Table 3-1 in order to satisfy the following key lemma. For succinctness and clarity, we

use the notation Bncατ for (Bn(γ 7→ cαγ)) (τ), where the operator Bn is applied to the

function γ 7→ cαγ := cos(2παγ), and the resulting spline is evaluated at τ . Similarly,

(Bn(γ 7→ sαγ)) (τ) is shortened to Bnsατ .

Lemma 2 (Reproduction of Radial Taylor Basis Functions). For r ∈ [0, 4],

ê0(r) = 1 (3–19)

ê1(r) = ê2(r) = r (3–20)

ê3(r) = ê4(r) = ê5(r) = r2 (3–21)

êk(r) = o(r2) as r → 0 for k > 5 (3–22)

which imply, by Lemma 1, that

eRTS
0 (r, τ) = 1, eRTS

1 (r, τ) = r Bncτ , eRTS
2 (r, τ) = r Bnsτ ,

eRTS
3 (r, τ) = r2, eRTS

4 (r, τ) = r2 Bnc2τ , eRTS
5 (r, τ) = r2 Bns2τ

eRTS
k (r, τ) = o(r2) as r → 0 for k > 5.

Proof. (3–19) follows since Â0v̂0 = v̂0 and
(

Ĝ0v̂0

)

(r) = 1. We can now verify, for

k ∈ {1, 2}, that êk(r)|r∈[2,4] =
(

Ĝ0v̂k

)

(r) = r|r∈[2,4] by B-spline-to-power-series conversion

(2–1). The additional property from (3–18) that êk(
1
2
r) = 1

2
êk(r) implies (3–20). Similarly,

for k ∈ {3, 4, 5}, B-spline-to-power-series conversion shows that êk(r)|r∈[2,4] = r2|r∈[2,4].

Hence, êk(
1
2
r) = 1

4
êk(r) implies (3–21).

When k > 5, using r̄ := r
λm ,

êk(r)
∣
∣
∣
r∈[2λm,4λm]

= êk(λ
mr̄)
∣
∣
∣
r̄∈[2,4]

(3–18)
= ℓm

k
︸︷︷︸

o(µm)

êk(r̄)
∣
∣
∣
r̄∈[2,4]

= o(µm)
∣
∣
∣
r̄∈[2,4]

= o ((λmr̄)2)
∣
∣
∣
r̄∈[2,4]

= o(r2)
∣
∣
∣
r∈[2λm,4λm]

,

proving (3–22).
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Lemma 2 is used to derive a quadratic Taylor expansion to show second-order

continuity for two of our proposed subdivision algorithms.

3.3.2 Reformulating RTS in eigenspace

Defining the real matrix VR as having kth column vk, we have (as in (3–15)),

AVR = VRΛ ⇒ V −1
R

AVR = Λ ⇒ V −1
R

A = ΛV −1
R

, (3–23)

implying that the rows of V −1
R

are left eigenvectors wk of A. We choose normalization

so that wT
k1

vk2 = δk1k2. Multiplication with V −1
R

projects the polar configuration into

eigenspace using these left eigenvectors wk. Precisely, q (respectively, xRTS) can be written

as a linear combination of the 6n right eigenvectors vk (respectively, eigensplines ê) as

follows

q = VR
︸︷︷︸

columns vk

( V −1
R
︸︷︷︸

rows wk

q) ⇒ qij =
6n∑

k

pk (vk)ij (3–24)

⇒ LRTS(q) =
6n∑

k

pk LRTS(vk) ⇒ xRTS(r, τ) =
6n∑

k

pk eRTS
k (r, τ), (3–25)

where each eigencoefficient pk is the inner product of wk and q. As was the case for vk,

wk is computed from ŵk (listed in Table 3-1) using the inverse Fourier transform so that

pk := wT
k q =

6∑

i

n∑

j

1

n
(ŵk)i opk

(
j

n

)

︸ ︷︷ ︸

(wk)ij

qij (3–26)

Specifically, for k ∈ Z6,

p0 :=
2

3
q00 +

1

3n

n∑

j

q1j , p3 := −q00 +
1

n

n∑

j

q1j , (3–27)

p1 :=
2

n

n∑

j

cj:nq1j , p4 :=
3

n

n∑

j

c2j:nq1j ,

p2 :=
2

n

n∑

j

sj:nq1j , p5 :=
3

n

n∑

j

s2j:nq1j
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The eigencoefficient pm
k := wT

k qm of qm simplifies to pm
k = wT

k Amq = (wT
k Am)q =

ℓm
k wT

k q = ℓm
k pk. The refinement equations (3–5)–(3–8) of RTS can now be rewritten in

terms of pk.

Lemma 3. The m-times refined mesh qm is defined by eigencoefficients and powers of

eigenvalues as follows.

qm+1
00 = p0 −

µm+1

3
p3 (3–28)

qm+1
1j = p0 + λm+1(p1cj:n + p2sj:n) +

2µm+1

3
(p3 + p4c2j:n + p5s2j:n) (3–29)

qm+1
2j = p0 + 2λm+1 (p1cj:n + p2sj:n) +

11µm+1

3
(p3 + p4c2j:n + p5s2j:n) (3–30)

qm+1
3j = p0 + 3λm+1 (p1cj:n + p2sj:n) +

26µm+1

3
(p3 + p4c2j:n + p5s2j:n) (3–31)

qm+1
4j = p0 + 4λm+1 (p1cj:n + p2sj:n) +

47µm+1

3
(p3 + p4c2j:n + p5s2j:n) (3–32)

qm+1
5j = p0 + 5λm+1 (p1cj:n + p2sj:n) +

74µm+1

3
(p3 + p4c2j:n + p5s2j:n) (3–33)

Proof.

qm+1
00 =

3

4
qm

00 +
1

4nm

Gqm

∑

h

qm
1,[h]

(3–27)
= pm

0 − 1

12
pm

3

= p0 −
µm

12
p3 = p0 −

µm+1

3
p3

qm+1
1j =

1

2
qm

00 +
1

n

n∑

h

(
1

2
+ ch−j:n +

1

2
c2(h−j):n

)

qm
1h

addition rule
for cosine & (3–27) = pm

0 +
1

2
(pm

1 cj:n + pm
2 sj:n) +

1

6
(pm

3 + pm
4 c2j:n + pm

5 s2j:n)

= p0 + λm+1(p1cj:n + p2sj:n) +
2µm+1

3
(p3 + p4c2j:n + p5s2j:n)

The proof for (3–30)–(3–33) is similar to that of (3–29).

With the radial eigenvectors v̂0 = [1, 1, 1, 1, 1, 1], v̂1 = v̂2 = [0, 1, 2, 3, 4, 5],

v̂3 = 1
3
[0, 2, 11, 26, 47, 74], and v̂4 = v̂5 = 1

3
[0, 2, 11, 26, 47, 74], (3–28)–(3–33) can be

written as
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qm+1
ij = p0 + (v̂1)iλ

m+1 (p1cj:n + p2sj:n)

+ µm+1 ((v̂3)ip3 + (v̂4)i (p4c2j:n + p5s2j:n))

⇒ qm+1
i,[τ ] = p0 + (v̂1)iλ

m+1 (p1cτ + p2sτ )

+ µm+1 ((v̂3)ip3 + (v̂4)i (p4c2τ + p5s2τ )) (3–34)

for i ∈ Z6. In particular,

lim
m→∞

qm
ij = p0 ⇒ lim

m→∞
(Gmqm) (r, τ) = p0,

converging to a unique point p0, showing that xRTS(r, τ) is C0 at the pole.

3.3.3 Eigenspace expansion and curvature continuity

C0 and C1 continuity can be seen more explicitly by expressing xRTS using the

eigenprojection.

xRTS(r, τ)
(3–25)
=

6n0∑

k

pk eRTS
k (r, τ)

Lemma 2 = p0 eRTS
0 (r, τ) +

(
p1 eRTS

1 (r, τ) + p2 eRTS
2 (r, τ)

)

+
(
p3 eRTS

3 (r, τ) + p4 eRTS
4 (r, τ) + p5 eRTS

5 (r, τ)
)

+ o
(
r2
)

(3–35)

Lemma 2 = p0 + (p1r Bncτ + p2r Bnsτ ) +
(
p3r

2 + p4r
2 Bnc2τ + p5r

2 Bns2τ

)
+ o

(
r2
)

This expansion using the eigensplines is almost a Taylor expansion. [Peters and Reif,

2008, Section 5.2] shows that the characteristic spline χ(r, τ) := (eRTS
1 (r, τ), eRTS

2 (r, τ)) =

r(Bncτ , B
nsτ ) is the only reparameterization, up to linear transformation, of xRTS that

can reproduce a linear Taylor expansion at the pole. Figures 2-7B, and 3-2 illustrate the

spline rings of χ, which are regular and injective, validating the reparameterization. Using

(x, y) := χ(r, τ), the reparameterized surface xRTS(x, y) := xRTS(r, τ) has the first-order

Taylor expansion

41



xRTS(x, y) = p0 + (p1x + p2y) + o (r)
∣
∣
∣
r∈[2λm,4λm]

and is therefore C1 at the pole. By the conditions in [Peters and Reif, 2008, Section 7.1],

the additional property that (ℓ0, ℓ1, ℓ2, ℓ3, ℓ4, ℓ5) = (1, λ, λ, λ2, λ2, λ2) implies that the limit

surface also has bounded curvature.

In order to take this a step further to C2 continuity, we need eigensplines eRTS
3 , eRTS

4 ,

eRTS
5 to be quadratic with respect to the reparameterization χ to induce a second-order

Taylor expansion. Preferably, these eigensplines should not be zero, since that would

result in a zero second derivative and a visible flat-spot in the vicinity of the pole.

χ(r, τ) = r(Bncτ , B
nsτ ) is degree 1 in r and degree 3 in τ , which is the minimum degree

needed to create C2 spline rings around the pole. Consequently, eRTS
3 , eRTS

4 , and eRTS
5 need

degree (2, 6) to be quadratic in χ. This implies that it is impossible to create a stationary

C2 subdivision for polar configurations based on uniform splines with degree less than 6 in

the circular direction.

However, in the limit n → ∞, the surface around the pole is no longer a spline in the

circular direction, but an arbitrary curve qi,[τ ] for τ ∈ R1 (Figure 3-4B). Denote this case

as RTS∞, with qi,[τ ] being the control curves of this subdivision algorithm. We now show

that a non-trivial second-order Taylor expansion exists at the pole for RTS∞.

Lemma 4. eRTS
k (r, τ) − êk(r) opk(τ) = O

(
1
n2

)
, implying that

eRTS∞

k (r, τ) := limn→∞ eRTS
k (r, τ) = êk(r) opk(τ)

Proof. Since êk(r) is independent of valence, and

eRTS
k (r, τ) − êk(r) opk(τ) = êk(r) Bnopk(τ) − êk(r) opk(τ)

= êk(r) (Bnopk(τ) − opk(τ)) ,

we need only examine the spline approximation of opk(τ) via Bn. We show that

1. the distance between Bnopk(τ) and its control polygon is O
(

1
n2

)
, and that
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2. opk(τ) and its linear interpolant (i.e. the control polygon of Bnopk(τ)) is O
(

1
n2

)
.

Together, these statements imply by the triangle inequality that eRTS
k (r, τ) − êk(r) opk(τ) =

O( 1
n2 ), proving the lemma.

Step 1. [Lutterkort and Peters, 2001] showed that for uniform cubic splines with control

points [qij ]j∈Zn
, the distance between the control polygon and the spline is proportional to

the second differences of the control points: 1
6
maxj{|qi,j−1 − 2qij + qi,j+1|}. In the context

of this lemma, qij = opk

(
j
n

)
, and

1

6
max

j
{|qi,j−1 − 2qij + qi,j+1|}

=
1

6
max

j







∣
∣
∣
∣
∣
∣

opk

(
j − 1

n

)

+ opk

(
j + 1

n

)

︸ ︷︷ ︸

−2 opk

(
j

n

)
∣
∣
∣
∣
∣
∣







=
1

6
max

j

{∣
∣
∣
∣
2 opk

(
j

n

)

cαk:n − 2 opk

(
j

n

)∣
∣
∣
∣

}

=
1

3
max

j







∣
∣
∣
∣
opk

(
j

n

)∣
∣
∣
∣

︸ ︷︷ ︸

≤1

|(cαk:n − 1)|







≤1

3
max

j
{1 − cαk :n}

Taylor
=

expan.
O

(
α2

k

n2

)

= O

(
1

n2

)

Step 2. For an arbitrary function f : [a, b] ∈ R → R, a Taylor expansion at a shows that

a piecewise linear interpolant with distance 1
n

between breakpoints approximates f with a

deviation of O
(

1
n2 max[a,b]{f ′′}

)
. Consequently, the piecewise linear interpolant to opk(τ)

converges O
(

α2
k

n2

)

= O
(

1
n2

)
.

Theorem 1. In the limit n → ∞, RTS is C2 at the pole.

Proof. Assuming n → ∞ and continuing from (3–35),

xRTS∞(r, τ)
∣
∣
∣
r∈[2λm,4λm]

Lemma 2 &
Lemma 4 = p0 + (p1rcτ + p2rsτ ) +

(
p3r

2 + p4r
2c2τ + p5r

2s2τ

)
+ o

(
r2
)
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Changing from polar to Cartesian coordinates (x, y) := (rcτ , rsτ ), xRTS∞(x, y) :=

xRTS∞(r, τ) reveals the following second-order Taylor expansion at the pole

xRTS∞(x, y) = p0 + (p1x + p2y) +
(
p3(x

2 + y2) + p4(x
2 − y2) + p5(2xy)

)
+ o

(
x2 + y2

)
,

proving C2 continuity at the pole.

Nevertheless, curvature continuity comes at a cost: we are no longer polynomial in the

circular direction. In the Chapter 4, we adapt the intuition developed so far to create a C2

bi-3 subdivision algorithm that overcomes these disadvantages.

3.4 Approximation via Mesh Refinement

Mesh refinement is easiest to demonstrate on a control mesh with latitude-longitude

connectivity of the earth as in Figures 2-5B and 2-6. Such a spherical mesh consists

entirely of ordinary quads and exactly two polar configurations. Spherical meshes have

precisely two directions: A) radial, or longitudinal, corresponding to the j-spokes of

the polar configurations; and B) circular, or latitudinal, corresponding to the i-links of

the polar configurations. Each radial sequence of control points of the spherical mesh is

similarly called a spoke, while each (periodic) circular sequence is a link. We can perform

radial subdivision along the spokes of a spherical mesh by using the special RTS rules of

Definition 1 and Figure 3-3 in the vicinity of polar vertices, while using univariate cubic

refinement (2–4) away from them. We can also double the valence of each polar vertex by

performing circular subdivision along each link using univariate cubic refinement.

The RTS limit surface is defined by continually applying radial subdivision and

interpreting links sufficiently far away from the polar vertex as the control points of a

uniform bi-3 spline, implying that circular subdivision may be applied on these links.

Consequently, the RTS limit surface of a spherical mesh can be computed a la Figure

2-2(A-B) by applying radial subdivision ad infinitum followed by circular subdivision ad

infinitum. An m-times subdivided approximation this limit surface can hence be computed
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by subdividing m times in the radial direction followed by m-times subdividing in the

circular direction, as demonstrated in Figure 2-5B.

On the other hand, the curvature-continuous variation RTS∞ requires each polar

vertex to have infinite valence before radial subdivision is ever applied. This is accomplished

by interpreting each link to be the control points of a cubic spline which acts as a control

curve of RTS∞. The corresponding limit surface can be computed by applying circular

subdivision ad infinitum (converging to the control curves) followed by radial subdivision.

As a result, an m-times refined approximation is computed by subdividing m times in the

circular direction followed by m-times in the radial direction.

A

B1 B2

C

D

Figure 3-5. Combining Catmull-Clark and RTS. A) Separating the input mesh. B)
Subdividing the polar configuration B1) radially then B2) circularly for
bounded curvature (red arrows), OR B1) circularly then B2) radially for
curvature continuity (blue arrows). C) Subdividing the remainder using
Catmull-Clark. D) Joining the refined meshes after removal of overlapping
facets.

Either mesh refinement technique can be combined with Catmull-Clark subdivision to

be applicable to arbitrary quad meshes augmented with polar configurations (see Figure

3-5).

1. Split off polar configurations: Copy all polar 3-rings and remove each polar vertex
from the input mesh.
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2. Subdivide polar configurations: For each polar configuration,

(a) subdivide m times radially, and then

(b) subdivide m times in the circular direction.

3. Subdivide the remaining mesh: Apply m steps of Catmull-Clark subdivision to the
mesh without the polar vertices.

4. Merge results: Drop the boundary facets of the meshes subdivided in steps 2 and 3
and join them by identifying the resulting geometrically identical boundary vertices.

Note that the 2- and 3-links are copied with the polar vertex, but not removed from

the rest of the mesh (Figure 3-5A), and both Catmull-Clark and polar subdivision refine

these common links using uniform bi-3 subdivision rules. The transition between the

Catmull-Clark and polar limit surfaces is therefore C2.

The disadvantage of such a refinement scheme is that it is not iterative. We cannot

take the already-refined mesh and apply RTS radial subdivision to converge to the same

limit surface. To avoid separation of the polar configuration from the rest of the surface,

it would be far better if the subdivision algorithm offered a simultaneous radial/circular

mesh refinement algorithm in the spirit of Catmull-Clark and Figure 2-3C. Chapter 4

describes such an algorithm.
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CHAPTER 4
C2 POLAR SUBDIVISION (C2PS)

4.1 Semi-Stationary Subdivision

RTS can be adapted to non-stationary connectivity while keeping the weights

dependent only on the connectivity of the mesh. In particular, the valence of the polar

vertex doubles after every subdivision. We are no longer limited by stationary subdivision

theory, which requires degree 6 in the circular direction for second-order continuity, as

shown previously.

Definition 2. Denote by C2 polar subdivision (C2PS) the algorithm that subdivides an

nm-valent polar configuration qm to an 2nm-valent polar configuration qm+1 via (see Figure

4-1)

qm+1
00 := (1 − a)qm

00 +
a
nm

Gqm

∑

η

qm
1,[η] =

3

4
qm

00 +
1

4nm

Gqm

∑

η

qm
1,[η] (4–1)

qm+1
1,[τ ] := (1 − b̂0)q

m
00 +

1

nm

Gqm

∑

η

(b̂0 + cη−τ +
1

2
c2(η−τ)

)

qm
1,[η]

=
1

2
qm

00 +
1

nm

Gqm

∑

η

(
1

2
+ cη−τ +

1

2
c2(η−τ)

)

qm
1,[η] (4–2)

qm+1
2,[τ ] := 
q̃m

1,[τ ] + (1 − 
)q̃m
2,[τ ] +

2d̂0

nm

Gqm

∑

η

cη−τq
m
1,[η]

=
11

12
q̃m

1,[τ ] +
1

12
q̃m

2,[τ ] −
1

6nm

Gqm

∑

η

cη−τq
m
1,[η] (4–3)

qm+1
3,[τ ] :=

1

2
q̃m

1,[τ ] +
1

2
q̃m

2,[τ ] qm+1
4,[τ ] :=

1

8
q̃m

1,[τ ] +
6

8
q̃m

2,[τ ] +
1

8
q̃m

3,[τ ]

qm+1
5,[τ ] :=

1

2
q̃m

2,[τ ] +
1

2
q̃m

3,[τ ] (4–4)

where q̃m is obtained after subdividing qm once in the circular direction. Observe that

qm+1
3,[τ ] , qm+1

4,[τ ] , qm+1
5,[τ ] are computed via uniform bi-3 spline subdivision. Let the operator T

denote a single application of C2PS. The limit surface xC2PS is the union of spline rings

Gmqm where qm := T m(q0).
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...

...

...

...

aaaa 1−b̂0 b
n−1

2

b 1

2b
n−3

2


 d
n−1

2

d 1

2d
n−3

2

1−

1
2

1
2

Figure 4-1. C2 polar subdivision rules. The rules are the same as RTS (Figure 3-3), except
that the outer i-links require intermediate uniform cubic circular subdivision
(intermediate vertices indicated by 2). The refined mesh (• and dashed lines)
is computed as before from the old mesh (◦, solid lines) with bj and dj

computed via (3–9) and (3–10) using half-integer indices. As in RTS, bi-3 rules
are applied away from the polar vertex.

Since C2PS subdivides in both the radial and circular directions simultaneously, it

is directly compatible with Catmull-Clark, requiring no mesh separation for refinement:

every quad on the coarse mesh yields four after subdivision, and each polar triangle splits

into two polar triangles and two quads, as illustrated in Figure 4-1. Additionally, the

limit surface is bi-3 and can be computed as a closed-form expression, which is difficult to

do for RTS on an infinite-valent vertex. Each subsequent spline ring has twice as many

polynomial patches and control points as its predecessor, and this exponentially-increasing

order of approximation enables the spline ring sequence to converge to a second-order

Taylor expansion at the pole.

4.2 Analysis

Since the connectivity is no longer stationary at the polar vertex, the traditional

method of spectral analysis does not directly apply. However, if we rewrite (4–1)–(4–4)

in eigenspace as we did RTS in Section 3.3.2, we can employ a similar analysis technique.
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What helps is the intuition from RTS that the second-order expansion at the pole is

determined by the eigensplines ek multiplied by eigencoefficients pk defined in (3–27).

The eigencoefficient pm
k of C2PS is also computed via (3–27) on qm, and we

abbreviate pk := p0
k. The eigensplines of C2PS are the limit surface eC2PS

k := LC2PS (vk)

where vk is an eigenvector of RTS with polar valence n0. A superscript of RTSnm

disambiguates the eigenspline e
RTSnm

k of RTS on a valence nm polar configuration.

The following subsections will show the following.

• As in RTS, pk∈Z6 is preserved after every application of T – i.e. pm+1
k = ℓkp

m
k =

ℓm+1
k pk (Lemma 5).

• T can be approximated in terms of pk∈Z6 plus a deviation of O
(

1
8m

)
for polar

valence nm (Lemma 6).

• For k ∈ Z6n, eC2PS
k converges to eRTS∞

k at the rate of O
(

1
8m

)
at the pole (Lemma 7).

• The statements above yield a second-order Taylor expansion of xC2PS at the pole
proving that it is C2 (Theorem 2).

4.2.1 Preservation of eigencoefficients

The following simplifications can be shown by using the addition rule for sine and

cosine, and the orthogonality of the discrete Fourier basis.

1

2n

2n∑

g

ca1(g−j):2n
1

n

n∑

h

ca2(h− g
2
):nqih =







1
n

∑n
h qih if a1 = a2 = 0

1
2n

∑n
h ca1(h− j

2
):nqih if a1 = ±a2 6= 0

0 otherwise

1

2n

2n∑

g

sa1(g−j):2n
1

n

n∑

h

ca2(h− g

2
):nqih =







±1
2n

∑n
h sa1(h− j

2
):nqih if a1 = ±a2 6= 0

0 otherwise
(4–5)

Using these simplifications, we prove the following lemma for C2PS.

Lemma 5. For the subdivision algorithm C2PS, pm
k = ℓm

k pk when k ∈ Z6 and m ≥ 0.

Proof. The base case m = 0 of the induction is trivially true. For the inductive step, we

assume pm
k = ℓm

k pk and show that this property holds for pm+1
k as well.
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Case k ∈ {0, 3}:

pm+1
3

(3–27)
= − qm+1

00 +
1

nm+1

Gqm+1
∑

γ

qm+1
1,[γ]

(4–1)
=

(4–2)
−
(

3

4
qm

00 +
1

4nm

Gqm

∑

η

qm
1,[η]

)

+
1

2nm

Gqm+1
∑

γ

(

1

2
qm

00 +
1

nm

Gqm

∑

η

(
1

2
+ cη−γ +

1

2
c2(η−γ)

)

qm
1,[η]

)

(4–5)
= −

(

3

4
qm

00 +
1

4nm

Gqm

∑

η

qm
1,[η]

)

+

(

1

2
qm

00 +
1

nm

Gqm

∑

η

1

2
qm

1,[η]

)

=
1

4

(

−qm
00 +

1

nm

Gqm

∑

η

qm
1,[η]

)

=
1

4
pm

3 = ℓ3p
m
3 = ℓm+1

3 p3

The sequence of steps for k = 0 is very similar to those of k = 3 above, and it similarly

concludes that pm+1
0 = ℓm+1

0 p0.

Case k ∈ {1, 2, 4, 5}:

pm+1
1

(3–27)
=

2

nm+1

Gqm+1
∑

γ

cγq
m+1
1,[γ]

(4–2)
=

2

2nm

Gqm+1
∑

γ

cγ

(

1

2
qm

00 +
1

nm

Gqm

∑

η

(
1

2
+ cη−γ +

1

2
c2(η−γ) +

1

8
c3(η−γ)

)

qm
1,[η]

)

(4–5) &
(cγ = c0−γ) =

2

2nm

Gqm

∑

η

cηq
m
1,[η] =

1

2
pm

1 = ℓ1p
m
1 = ℓm+1

1 p1

The k ∈ {2, 4, 5} cases are derived using a very similar sequence of steps, showing that for

all six cases pm+1
k = ℓm+1

k pk, completing the induction.

4.2.2 Reformulation of C2PS in terms of the eigencoefficients

In the same vein as (3–28)–(3–33), C2PS can be reformulated to depend only on

pk∈Z6 plus a deviation that diminishes quickly in the number of subdivisions.
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Lemma 6. The C2PS refinement equations (4–1)–(4–4) are of the form

qm+1
00 = p0 −

µm+1

3
p3 (4–6)

qm+1
1,[τ ] = p0 + λm+1(p1cτ + p2sτ ) +

2µm+1

3
(p3 + p4c2τ + p5s2τ ) (4–7)

qm+1
2,[τ ] = p0 + 2λm+1 (p1cτ + p2sτ ) +

11µm+1

3
(p3 + p4c2τ + p5s2τ ) + O

(
1

8m+1

)

(4–8)

qm+1
3,[τ ] = p0 + 3λm+1 (p1cτ + p2sτ ) +

26µm+1

3
(p3 + p4c2τ + p5s2τ ) + O

(
1

8m+1

)

(4–9)

qm+1
4,[τ ] = p0 + 4λm+1 (p1cτ + p2sτ ) +

47µm+1

3
(p3 + p4c2τ + p5s2τ ) + O

(
1

8m+1

)

(4–10)

qm+1
5,[τ ] = p0 + 5λm+1 (p1cτ + p2sτ ) +

74µm+1

3
(p3 + p4c2τ + p5s2τ ) + O

(
1

8m+1

)

(4–11)

Due to the interaction with circular subdivision, the derivation for the four outer links

qm+1
2,[τ ] –q

m+1
5,[τ ] is involved and requires the introduction of new abstractions. The proof of

(4–6)–(4–11) is hence deferred to the appendix to maintain the flow of this discussion.

These equations can be reduced to

qm+1
i,[τ ] = (v̂0)ip0 + (v̂1)iλ

m+1 (p1cτ + p2sτ )

+ µm+1 ((v̂3)ip3 + (v̂4)i (p4c2τ + p5s2τ )) + O

(
1

8m+1

)

, (4–12)

for i ∈ Z6, differing only by O
(

1
8m+1

)
from (3–34) when the valences are equal.

4.2.3 Convergence of the eigensplines

Here we show that eC2PS
k (r, τ) converges to eRTS∞

k (r, τ) as r → 0.

Lemma 7.
∣
∣eC2PS

k (r, τ) − eRTS∞

k (r, τ)
∣
∣
r∈[2λm,4λm]

= O
(

1
8m

)

Proof. Since both RTS and C2PS are affine-invariant, eC2PS
0 (r, τ) = eRTS∞

0 (r, τ) = 1, and

the lemma holds. Assume that k > 0, which also implies that |ℓk| ≤ λ. Let vk and ṽk be

the kth eigenvectors of RTS of valence nm and n0, respectively.

E :=
∣
∣
∣eC2PS

k (r, τ) − eRTS∞

k (r, τ)
∣
∣
∣
r∈[2λm,4λm]

=
∣
∣
∣eC2PS

k (λmr, τ) − eRTS∞

k (λmr, τ)
∣
∣
∣
r∈[2,4]
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triangle
inequality ≤

∣
∣
∣eC2PS

k (λmr, τ) − e
RTSnm

k (λmr, τ)
∣
∣
∣
r∈[2,4]

+
∣
∣
∣e

RTSnm

k (λmr, τ) − eRTS∞

k (λmr, τ)
∣
∣
∣
r∈[2,4]

(3–3)
= |GmT m(ṽk)(r, τ) − GmAm(vk)(r, τ)|

︸ ︷︷ ︸

T m(ṽk) and Am(vk) have valence nm; Gm is linear

+
∣
∣
∣ℓm

k e
RTSnm

k (r, τ) − ℓm
k eRTS∞

k (r, τ)
∣
∣
∣
r∈[2,4]

= |Gm(T m(ṽk) − Am(vk))(r, τ)|
︸ ︷︷ ︸

E1:=

+ ℓm
k
︸︷︷︸

O(λm)

∣
∣
∣e

RTSnm

k (r, τ) − eRTS∞

k (r, τ)
∣
∣
∣
r∈[2,4]

︸ ︷︷ ︸

Lemma 4 ⇒ =O

„

1

n2
m

«

=O( 1
4m )

= E1 + O

(
1

8m

)

By definition, ph = δhk for h ∈ Z6 when computed on either eigenvector ṽk or vk; in other

words, the first six eigencoefficients of these two eigenvectors match. Since (4–12) and

(3–34) define T m(ṽk) and Am(vk), respectively, in terms of ph∈Z6 , and these two formulae

differ by O
(

1
8m

)
, it follows that T m(ṽk) − Am(vk) = O

(
1

8m

)
. Therefore, E1 = O

(
1

8m

)
, and

E = O
(

1
8m

)
, proving the lemma.

4.2.4 Proof of curvature continuity

We can now establish a second-order Taylor expansion at the pole, proving curvature

continuity.

Theorem 2. C2PS is C2 at the pole.

Proof. Recall from (3–24) that a polar configuration q0 of valence n0 can be written as the

following linear combination of the eigenvectors, v0
k, k ∈ Z6n0 .

q0
ij =

6n0∑

k

pk (v0
k)ij ⇒ LC2PS(q0) =

6n0∑

k

pk LC2PS(v0
k)

⇒ xC2PS(r, τ) =

6n0∑

k

pk eC2PS
k (r, τ)

We examine the sequence xC2PS(r, τ)
∣
∣
r∈[2λm,4λm]

(3–3)
= (GmT mq0) (r, τ) of spline rings

that approach the pole. Since r ∈ [2λm, 4λm] ⇒ r
λm ∈ [2, 4], r

λm is bounded away from

0 and ∞ and has no impact on asymptotic behavior when multiplied. This simplifies
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O
(

1
8m

)
= O(λ3m) = O

(
( r

λm )3λ3m
)

= O(r3). Thus,

xC2PS(r, τ)
∣
∣
∣
r∈[2λm,4λm]

=

6n0∑

k

pk eC2PS
k (r, τ)

∣
∣
∣
r∈[2λm,4λm]

Lemma 7 =
6n0∑

k

(

pk eRTS∞

k (r, τ) + O

(
1

8m

)

︸ ︷︷ ︸

O(r3)

)∣
∣
∣
∣
∣
r∈[2λm,4λm]

=

(

p0 eRTS∞

0 (r, τ) +
(
p1 eRTS∞

1 (r, τ) + p2 eRTS∞

2 (r, τ)
)

+
(
p3 eRTS∞

3 (r, τ) + p4 eRTS∞

4 (r, τ) + p5 eRTS∞

5 (r, τ)
)

+
6n0∑

k=6

pk eRTS∞

k (r, τ) + O
(
r3
)

)∣
∣
∣
∣
∣
r∈[2λm,4λm]

Lemma 2 &
Lemma 4 = p0 + r (p1cτ + p2sτ ) + r2 (p3 + p4c2τ + p5s2τ ) + o

(
r2
)
∣
∣
∣
r∈[2λm,4λm]

Changing to Cartesian coordinates (x, y) := (rcτ , rsτ), xC2PS(x, y) := xC2PS(r, τ),

xC2PS(r, τ)
∣
∣
∣
r∈[2λm,4λm]

= xC2PS(x, y)
∣
∣
∣√

x2+y2∈[2λm,4λm]

=
(
p0 + (p1x + p2y) +

(
p3(x

2 + y2) + p4(x
2 − y2) + p5(2xy)

)
+ o

(
x2 + y2

))

∣
∣
∣
∣
∣√

x2+y2∈[2λm,4λm]

,

giving an explicit second-order expansion at the pole when m → ∞. Hence the

construction is C2.

The explicit Taylor expansion at the pole allows one to compute principal curvatures

and directions. In some constructions, curvature continuity comes at the cost of

macroscopic shape deterioration, even though the microscopic shape is improved. Chapter

5 shows empirically that our construction does not suffer from this defect; it generates

surfaces of high visual quality.
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CHAPTER 5
RESULTS AND DISCUSSION

Figure 5-1 shows a side-by-side comparison of RTS, RTS∞, and C2PS. To avoid

curvature fluctuations in the first and second spline rings (Figure 5-1(A-B)), uniform

(bi)cubic subdivision is applied to compute the refined 2-link on the first subdivision

step (Figure 5-1(C-E)). For RTS, this is equivalent to applying bicubic polar subdivision

on the first radial subdivision step, while using RTS on all the subsequent ones. The

n-sidedness of the RTS curvature distribution is obvious, while RTS∞ and C2PS yield

smoother curvature transitions in the circular direction. C2PS distributes curvature more

evenly, resulting in a lower maximal Gaussian curvature than RTS or RTS∞ near the

pole. As expected, for higher valences, the limit surfaces of these three algorithms are

similar (Figure 5-2). Figure 5-3 tests C2PS against various challenging configurations.

The smooth highlight lines attest to the surface quality in the vicinity of the pole, even on

higher-order saddles.

It may be possible to devise a bi-degree-4 C3 polar scheme using a similar technique.

The key ingredient is that the spline rings constituting the limit surface would need to

shrink more rapidly to the pole. To see this, observe that the reformulation of C2PS in

terms of eigencoefficients (Lemma 6) is proved by simplifying the treatment of arbitrary

number of circular subdivisions using a parameterized equivalence class aff4
[γ] (qi). The

use of this class contributes a deviation of O
(

1
8m

)
, which is the product of λ and the

convergence rate O
(

1
n2

m

)

= O
(

1
4m

)
of piecewise linear approximations to cosines and sines.

Section 4.2.4 showed that for ℓ1 = ℓ2 = λ = 1
2
, O
(

1
8m

)
simplifies to O (λ3m) = O(r3),

contributing to the third-order term of the Taylor expansion at the pole. While our C2

algorithm is unaffected by this, designing a C3 algorithm requires understanding the

third-order term precisely. One way to employ the simplicity of our proofs is to enforce

eigenvalues ℓ1 = ℓ2 = λ < 1
2
, resulting in a deviation of O

(
λm

4m

)
= o (λ3m) that converges to

0 more quickly than r3, avoiding interference with the third-order expansion.

54



RTS

RTS∞

C2PS

A B C D E F

Figure 5-1. Comparison of RTS, RTS∞, and C2PS. (C) spline rings defining limit surfaces
(A and D) and Gaussian curvature (B and E) of two different initialization
strategies of each scheme on Figure 2-5B input. Direct application produces
(A) a sharper bend in the silhouette and (B) an abrupt curvature transition
(dark blue means zero Gauss curvature), whereas using bicubic subdivision to
compute the 2-link for the first subdivision step improves the curvature
distribution (C, D, E). (F) RTS reveals an n-sidedness in its curvature
distribution, while the curvature of RTS∞ and C2PS is much more symmetric.

A. Input B. RTS C. RTS∞ D. C2PS

Figure 5-2. RTS, RTS∞, and C2PS on a polar configuration of valence 20 show that their
limit surfaces and Gaussian curvature distributions (dark blue is zero
curvature) are similar for large polar valences.

Catmull-Clark extraordinary vertices of arbitrary valence can be converted to polar

configurations, as demonstrated in Figure 5-4, additionally creating 5-valent extraordinary

vertices (Figure 5-4A) or pentagons (Figure 5-4C). Thus, it may be possible to devise C2

algorithms for either 5-valent extraordinary vertices or pentagons to construct surfaces

that are globally C2. This is left for future work.
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A B C D

Figure 5-3. Shape gallery demonstrating that C2PS performs with good shape. A) Input,
B) twice subdivided mesh, C) Gaussian curvature of limit surface, and D)
highlight lines. Zero curvature is green, while negative curvature is blue and
positive is red.
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A B C

Figure 5-4. B) An n-valent Catmull-Clark extraordinary vertex can be converted to either
A) a 2n-valent polar configuration and n 5-valent extraordinary vertices, or C)
a n-valent polar configuration and n pentagons.
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CHAPTER 6
CONCLUSION

For quad meshes, we have introduced the polar configuration, which appears

naturally at the ends of elongated objects, like the nose of a plane or the tips of fingers,

where control lines along the same tensor direction meet to form a singularity. We

have presented three polar subdivision algorithms compatible with Catmull-Clark

[Catmull and Clark, 1978] subdivision: RTS, RTS∞, and C2PS. While RTS surfaces

are only C1 with bounded curvature at its pole, RTS∞ and C2PS have been shown to be

fully C2. And while the second-order continuity of RTS∞ is easier to prove, this algorithm

transitions from a polynomial spline boundary to a non-polynomial surface that is, in

general, not easy to compute exactly. Moreover, as a mesh refinement algorithm, RTS∞

is more complex to implement, requiring a logical separation of the polar configuration

from the rest of the input mesh before subdivision is applied to it. In contrast, the entirely

spline-based C2PS is simpler both as a mesh refinement algorithm, and for explicitly

evaluating the limit surface. However, since C2PS results in non-stationary connectivity,

standard subdivision theory fails to apply, and the proof of curvature-continuity at the

pole is more complex. Nevertheless, we have shown, in this study that the algorithm is C2

and given evidence that it tends to give good shape.

Subdivision algorithms are an accepted standard in animation and are sometimes used

for conceptual design in CAD. These algorithms have been been avoided for high-quality

surfaces in CAD partially due to shape problems near extraordinary vertices. We have

gone one step closer to show that a subdivision algorithm may not be complex and still

have good shape if non-stationary connectivity can be exploited to increase the order

of approximation in the vicinity of the pole. We offer an additional incentive to use our

method because theory developed in [Reif, 1998] and [Myles et al., 2008] suggests that

curvature continuity may require a degree 6 NURBS surface when more than 4 NURBS

meet at a point. On the other hand, we have shown that degree 3 is sufficient for a simple
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subdivision algorithm exploiting non-stationary connectivity. We hope techniques such as

ours help make subdivision surfaces more useful in mainstream CAD.
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APPENDIX: C2PS IN TERMS OF THE EIGENCOEFFICIENTS

Here, we derive in detail the reformulation (4–6)–(4–11) of C2PS. A checkmark (✔)

indicates that one of these equations has been proved. While qm+1
00 and qm+1

1j are readily

expressed in terms of the eigencoefficients,

qm+1
00 =

3

4
qm

00 +
1

4nm

Gqm

∑

η

qm
1,[η] = pm

0 − 1

12
pm

3

✔ = p0 −
µm

12
p3 = p0 −

µm+1

3
p3 (A–1)

qm+1
1,[τ ] =

1

2
qm

00 +
1

nm

Gqm

∑

η

(
1

2
+ cη−τ +

1

2
c2(η−τ) +

1

8
c3(η−τ)

)

qm
1,[η]

addition rule
for cosine & (3–27) = pm

0 +
1

2
(pm

1 cτ + pm
2 sτ ) +

1

6
(pm

3 + pm
4 c2τ + pm

5 s2τ )

✔ Lemma 5 = p0 + λm+1(p1cτ + p2sτ ) +
2µm+1

3
(p3 + p4c2τ + p5s2τ ) (A–2)

(4–3) & addition
for cosine & (3–27) qm+1

2,[τ ] =
11

12
q̃m

τ,[1] +
1

12
q̃m

τ,[2] −
1

6
(pm

1 cτ + pm
2 sτ )

Lemma 5 =
11

12
q̃m

τ,[1] +
1

12
q̃m

τ,[2] −
λm+1

3
(p1cτ + p2sτ ), (A–3)

the expressions for the four outer links q2 (A–3), q3, q4, and q5 are involved due to

circular subdivision, and only the dominant terms will be shown and needed. With the

intuition that every point on a spline is an affine (in fact, convex) combination of the

four B-spline control points that are parametrically closest to it, we define the following

equivalence class of affine combinations.

Definition 3 (aff4
[γ]). Let u be a vector of n B-spline control points of a periodic uniform

cubic spline with knot sequence 1
n
Zn. The control points u =

[

u[ 0
n ], . . . ,u[n−1

n ]

]

are indexed

by their Greville abscissae so that adjacent pairs of Greville abscissae are 1
n

apart. The

equivalence class aff4
[γ](u) of all local affine combinations centered at γ is defined as

aff4
[γ] (u) :=







4∑

g

ugu[γg]

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑4
g ug = 1,

∑4
g ugγg = γ, and u[γ0], . . . ,u[γ3] are the four

control points whose Greville abscissae γg are closest to

γ, or have weight ug = 0 if they tie for fourth place.






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Since adjacent Greville abscissae differ by 1
n
, the affine combinations in aff4

[γ] (u) are

such that |γg − γ| < 2
n

= O( 1
n
) if ug 6= 0. Cubic B-spline refinement rules ensure that

all affine combinations resulting from arbitrarily-many cubic B-spline refinements on u

belong in aff4
[γ] (u). The control points in each circularly-subdivided i-link q̃m

i are affine

combinations of control points in the i-link qm
i . Since these affine combinations result in

an arbitrary number of cases in our reformulation of C2PS, we focus on simplifying affine

combinations of trigonometric functions.

Lemma 8. If u = [opk(
g
n
)]g∈Zn

, then for all ũ[γ] :=
∑4

g ugu[γg] ∈ aff4
[γ](u), ũ[γ] =

opk(γ) + O
(

α2
k

n2

)

.

Proof.

Case 1: αk = 0 (i.e. opk(γ) = c0γ = 1)

For u = [1]g∈Zn
, ũ[γ] =

∑4
g ug u[γg ]

︸︷︷︸

1

=
∑4

g ug = 1 = opk(γ).

Case 2: uγ = cαkγ, αk 6= 0

ũ[γ] =

4∑

g

ugcαkγg
=

4∑

g

ugcαk(γg−γ)+αkγ =

4∑

g

ug

(
cαk(γg−γ)cαkγ − sαk(γg−γ)sαkγ

)

=

4∑

g

ug

(

1 + O

(
α2

k

n2

))

︸ ︷︷ ︸

from cαk(γg−γ)

cαkγ − ug

(

αk(γg − γ) + O

(
α3

k

n3

))

︸ ︷︷ ︸

from sαk(γg−γ)

sαkγ
Taylor expan. &

|γg − γ| = O
`

1
n

´

= cαkγ

�
�

�
��7

1
4∑

g

ug + αksαkγ

��������*0
4∑

g

ug(γg − γ) + O

(
α2

k

n2

)

= cαkγ + O

(
α2

k

n2

)

,

satisfying the theorem.

Case 3: uγ = −sαkγ , αk 6= 0

The proof is almost identical to Case 2 and shows that ũ[γ] = sαkγ +O
(

α2
k

n2

)

, satisfying

the theorem.

Equipped with Lemma 8, we can now estimate qm+1
2,[τ ] by describing aff4

[τ ](q
m+1
2 ) ∋

qm+1
2,[τ ] in terms of pk∈Z6. The bound O

(
α2

k

n2
m

)

on the terms not explicitly written in terms of

pk simplifies to O
(

1
4m

)
since αk ∈ {0, 1, 2} in the relevant cases and nm = n02

m. For each
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ũ
q

m+1
1

[τ ] ∈ aff4
[τ ](q

m+1
1 ),

(A–2) &
Lemma 8

ũ
q

m+1
1

[τ ] = p0 + λm+1

(

p1

(

cτ + O

(
1

4m

))

+ p2

(

sτ + O

(
1

4m

)))

+
2µm+1

3

(

p3 + p4

(

c2τ + O

(
1

4m

))

+ p5

(

s2τ + O

(
1

4m
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= p0+λm+1 (p1cτ + p2sτ )+
2µm+1

3
(p3 + p4c2τ + p5s2τ )+O

(
1

8m+1

)

(A–4)

For each ũ
q

m+1
2

[τ ] ∈ aff4
[τ ](q

m+1
2 ), there exist ũ

qm
1

[τ ] ∈ aff4
[τ ](q

m
1 ) and ũ

qm
2

[τ ] ∈ aff4
[τ ](q

m
2 ) so that

(A–3) &
Lemma 8

ũ
q
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2

[τ ] =
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ũ

qm
1

[τ ] +
1
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ũ

qm
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[τ ] − λm+1

3

(

p1cτ + p2sτ + O

(
1

4m
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(A–4) &
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=
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(
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3
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(
1
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ũ

qm
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3
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(
1
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)

=
11

12
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5

3
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22
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µm+1 (p3 + p4c2τ + p5s2τ )

+ O

(
1
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+
1

12
ũ

qm
2

[τ ] (A–5)

(A–5) describes the set aff4
[τ ](q

m+1
2 ) recursively with respect to m. Expanding out the

recursion shows that for each ũ
q

m+1
2

[τ ] ∈ aff4
[τ ](q

m+1
2 ), there exists ũ

q0
2

[τ ] ∈ aff4
[τ ](q

0
2) so that

ũ
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2
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12h
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Since qm+1
2,[τ ] ∈ aff4

[τ ](q
m+1
2 ), it too is described by (A–6), proving 4–8. We similarly

derive formulas for ũ
qm+1

3

[τ ] ∋ aff4
[τ ](q

m+1
3 ), ũ

qm+1
4

[τ ] ∋ aff4
[τ ](q

m+1
4 ), and ũ

qm+1
5

[τ ] ∋ aff4
[τ ](q

m+1
5 ),

automatically yielding formulas for qm+1
3,[τ ] , qm+1

4,[τ ] , and qm+1
5,[τ ] . For each ũ

q
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[τ ] ∈ aff4
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Karčiauskas, K. and Peters, J. 2007d. On the curvature of guided surfaces. Tech.
rep., University of Florida CISE, REP-2007-430, Gainesville, FL, USA.

64
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