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Abstract

High-order and regularly sampled surface representations are more
efficient and compact than general meshes and considerably sim-
plify many geometric modeling and processing algorithms. A num-
ber of recent algorithms for conversion of arbitrary meshes to regu-
larly sampled form (typically quadrangulation) aim to align the re-
sulting mesh with feature lines of the geometry. While resulting in a
substantial improvement in mesh quality, feature alignment makes
it difficult to obtain coarse regular patch partitions of the mesh.

In this paper, we propose an approach to constructing patch layouts
consisting of small numbers of quadrilateral patches while main-
taining good feature alignment. To achieve this, we use quadrilat-
eral T-meshes, for which the intersection of two faces may not be
the whole edge or vertex, but a part of an edge. T-meshes offer
more flexibility for reduction of the number of patches and vertices
in a base domain while maintaining alignment with geometric fea-
tures. At the same time, T-meshes retain many desirable features
of quadrangulations, allowing construction of high-order represen-
tations, easy packing of regularly sampled geometric data into tex-
tures, as well as supporting different types of discretizations for
physical simulation.

CR Categories: I.3.5 [Computational Geometry and Object Mod-
eling]: Geometric algorithms, languages, and systems

Keywords: patch layout, quadrangulation, parametrization, T-
splines

1 Introduction

Subdivision surfaces, surface splines, and related multiresolution
and regularly sampled surface representations are far more com-
pact and efficient than general meshes and simplify many geometric
modeling and processing algorithms. Converting arbitrary meshes
to this type of representations is difficult because of many conflict-
ing requirements for such conversions.

Most regularly-sampled surface representations consist of patches
forming a domain mesh, with a regular pattern of samples for each
patch. We focus on quadrilateral patches, as these are most com-
monly used.

Important requirements include (cf. [Bommes et al. 2009]):

1. Patch quality: Patches should be well-shaped, with minimal
skew and bounded aspect ratio.
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2. Approximation: Each patch should approximate the original
mesh well.

3. Mesh complexity: The domain mesh should have as few ver-
tices as possible, while satisfying other constraints.

4. Orientation and Alignment: In areas with well-pronounced
consistent curvature directions, patch parametric lines should
follow the curvature; patch boundaries should be aligned with
sharp features and smooth surface boundaries.

Existing techniques offer a tradeoff between alignment with fea-
tures and isometry and the number of patches in the domain mesh.
Techniques allowing to keep the number of patches small have only
restricted forms of alignment control, while many recent algorithms
with good alignment control often yield a larger number of patches
in the domain mesh.

Figure 1: Transforming the joint mesh into a T-spline surface.

Quite often the tradeoff between the number of patches in the coarse
mesh and alignment is fundamental, and not a feature of any spe-
cific algorithm: the maximal patch size in a local area is determined
by the distance between nearby feature lines, which can be quite
small. This local size restriction propagates globally (Figure 2) if
the patch boundaries are aligned with feature lines, resulting in do-
main meshes with numbers of patches growing far larger than the
complexity of the object suggests.

In this paper, we propose an approach to constructing domain
meshes consisting of small numbers of patches while maintaining
good feature alignment. Our approach is based on using domain
T-meshes, in which the intersection of two faces may be not the
whole edge or vertex, but a part of an edge. T-meshes dramatically
change the relation between the total number of patches needed and
the local feature size making it possible to align patches with the
field without restricting their size. Thus we generate one-to-two or-
ders of magnitude fewer patches than the coarsest quadrangulations
aligned to the same features.

We show that feature-aligned coarse T-meshes are naturally ob-
tained using recently developed global parametrization techniques
for quadrangulation [Kälberer et al. 2007; Bommes et al. 2009].

While T-meshes offer more flexibility, they also retain many de-
sirable features of domain meshes with no T-joints (conforming



meshes). Several high-order constructions (T-splines/NURCCs
[Sederberg et al. 2003] and PT-splines [Li et al. 2009; Deng et al.
2008]) are available, with natural refinement structure allowing
for multiresolution [Sederberg et al. 2004]. Adaptive structured
meshes, a subset of T-meshes, are widely used in simulation; many
local constructions developed for adaptive meshes, such as finite-
volume and finite-element discretizations, can be transferred to gen-
eral T-meshes ([Bazilevs et al. 2009]).

Overview. Our approach consists of the following main com-
ponents: (1) global parametrization construction; (2) constrained
parametrization optimization, aiming to improve T-mesh structure
while maintaining field alignment; (3) construction of an initial
patch layout and its optimization, and optionally, reconstruction of
a T-spline approximation to the original mesh.

We use a global parametrization method closely following
[Bommes et al. 2009], with some important changes discussed in
Section 4, aiming to improve the quality of the feature cross-field
guiding the parametrization.

The parametrization optimization step aims to reduce the number of
T-joints in the domain mesh, by changing the global parametriza-
tion so that more singularities are on the same parametric lines.
(Section 6).

We construct an initial patch layout with a number of patches within
a constant factor from the minimal possible for a given number
singularities. This initial layout may contain patches with bad ap-
proximation quality, unnecessary T-joints, and with unbalanced ar-
eas. We use a greedy constrained optimization strategy to move the
patch boundaries while maintaining alignment to obtain the final
layout (Section 5).

Finally, we fit a T-spline approximation to the surface, using the
optimized domain T-mesh as the T-spline domain. The resulting
surface can be either used directly (if the original mesh is well ap-
proximated by a piecewise-smooth surface), or used as the base for
a displaced surface.

2 Related work

The literature on parameterization, quadrangulation and conversion
to high-order surfaces is quite extensive, and we survey only the
most closely related work. Broader reviews can be found in [Hor-
mann et al. 2007; Sheffer et al. 2006].

A number of methods [Eck et al. 1995; Lee et al. 1998; Kho-
dakovsky et al. 2003; Marinov and Kobbelt 2005; Daniels et al.
2009a; Daniels et al. 2009b; Pietroni et al. 2009; Tarini et al. 2010]
use simplification techniques for constructing a conforming domain
mesh. These techniques make it possible to obtain very coarse do-
main meshes, with good user control over the domain mesh size.
While some degree of feature alignment is possible (cf. [Lee et al.
1998], [Marinov and Kobbelt 2005]), it is limited by the difficulty
of preserving features in simplification. Other methods use global
harmonic or conformal parametrizations with singularities [Gu and
Yau 2003; Dong et al. 2006; Tong et al. 2006; Ben-Chen et al.
2008; Springborn et al. 2008; Kovacs et al. 2009]. While some of
these methods offer a degree of control over the size and structure
of the domain mesh (e.g., [Dong et al. 2006]), feature alignment
is limited to determining positions of parametrization singularities.
[Huang et al. 2008] describes an algorithm for adding alignment
and orientation control to the parametrization, but the domain mesh
is still constructed independently of geometry features.

Field-alignment techniques [Ray et al. 2006; Kälberer et al. 2007;
Bommes et al. 2009] adapt the parameterization to the shape by fit-
ting the parametrization gradient to smoothed principal curvature
directions, or more generally, to a smooth cross-field capturing sur-
face features. The topological structure of the field (singularities
and separating lines) indirectly determines how fine the domain

mesh can be. Reducing the number of singularities is often diffi-
cult without significant smoothing of the field. Furthermore, as the
examples in Figure 2 show, even sparsely placed singularities do
not guarantee that they are connected together in a way that allows
constructing a coarse domain mesh. The method that we propose is
based on field alignment. However, similar to simplification-based
methods, we aim to produce coarse domain meshes, even for geom-
etry with relatively complex features, while maintaining alignment.

In geometric modeling, T-meshes were considered primarily in the
context of T-splines, T-NURCCs [Sederberg et al. 2003; Sederberg
et al. 2004], and PT-splines [Li et al. 2009; Li et al. 2007; Deng
et al. 2008]. [Li et al. 2006] demonstrated how to use periodic
global parametrization (PGP) of [Ray et al. 2006] to fit T-spline
surfaces to meshes. An important feature of PGP is its ability to
introduce T-joints during the parametrization process. However,
the complexity of the resulting domain mesh is still determined by
the topological structure of the field, with significant smoothing re-
quired to make it simpler. [Eppstein and Erickson 1999] demon-
strate how to use motorcycle graphs to partition a quad mesh into
rectangular patches allowing T-joints, and prove bounds on the pos-
sible number of patches, but the quality of the patch layout cannot
be controlled. [Carr et al. 2006] constructs rectangular geometry
images (effectively, a T-mesh) by partitioning a mesh into approx-
imately rectangular patches and parametrizing each on a rectangle,
but the patches are not adapted to the geometry. [He et al. 2006]
constructs a T-spline from an arbitrary mesh using global confor-
mal parametrization. In this extreme case it is possible to have ef-
fectively a single-patch domain mesh for an arbitrary surface. As is
the case with other harmonic methods, feature alignment control is
limited to parametrization singularity placement.

The quality of the feature-aligned quadrangulation depends on the
quality of feature detection, a difficult problem for many classes of
meshes. A number of techniques for defining and detecting feature
lines were proposed: [Ohtake et al. 2004; Hildebrandt et al. 2005;
Weinkauf and Günther 2009]. We use ridges and valleys computed
from smoothed curvature values obtained using the robust estima-
tion of [Kalogerakis et al. 2007] to determine which curvature di-
rections should be considered salient (Section 4).

3 Field-aligned quadrangulations

To motivate our approach, we consider constraints imposed on a
conforming quadrangulation by field alignment. These consider-
ations are not specific to any particular quadrangulation method.
Recall that a cross-field (4-rosy field or 4-symmetry field) [Hertz-
mann and Zorin 2000; Palacios and Zhang 2007; Ray et al. 2008]
is a quadruple of tangent vectors assigned to each surface point.
A quadrangulation algorithm aligns the edges of the quad with the
vectors of this field, so that no quad has singularities in the interior.
As a consequence, a field singularity has to be a quad vertex, and
there are quad edges following field integral lines starting at singu-
larities (separating lines) (Figure 2, right). Chains of quadrangu-
lation edges starting at singularities have to end at singularities, as
we can always extend a chain past a regular vertex.

Figure 2: Left: close sin-
gularities result in a strip of
small quads. Right: a singu-
larity close to separating line.

The most fundamental restric-
tion on the size of mesh
patches is imposed by the dis-
tance between field singular-
ities, as no quad can con-
tain singularities inside. In
many cases, it is essential
to place singularities close
to each other for the field
to follow features (Figure 2,
left). If the quad size changes
smoothly and is close to con-



stant over the mesh, a local size restriction becomes global.

More generally, it is not essential for two singularities to be close to
each other for the quad size to be constrained: it is sufficient for two
separating lines starting at these singularities to be close (Figure 2,
right). As there have to be quad edges along each separating line, at
best, we can produce long and thin quads bounded by these lines.

Both cases can be either due to the structure of surface features (like
singularities at two close corners) or be an artifact of constructing a
smooth field from the salient feature lines. In the first case, a coarse
mesh may be fundamentally incompatible with being aligned with
features. In the second case, the feature field can be changed to
improve the parametrization without changing the quality of the
alignment.

By allowing T-joints in the domain mesh, we make it possible to
switch to larger-size quads away from closely spaced singularities,
and terminate chains of quad edges following separating lines early,
removing both restrictions. Section 5 describes our algorithm for
T-mesh construction. By detecting closely spaced separating lines
and adding constraints to parametrization to snap them together, we
reduce the number of nonessential T-joints in the resulting domain
mesh (Section 6).

The need for rounding. For a general cross-field it is possible that
integral lines starting at singularities may pass arbitrarily close to
each other, or any integral line may pass arbitrarily close to itself.
For example, if we tilt the natural parametric lines on the torus so
that the slope is irrational, any integral line of this field will be an
infinite spiral around the torus.

To be able to obtain a valid quadrangulation, we need to ensure that
the integral lines are closed or end at singularities. In [Kälberer
et al. 2007; Bommes et al. 2009] this is ensured by a rounding pro-
cedure we discuss in greater detail in Section 4, which requires de-
viation of the quadrangulation lines from the original field. Creat-
ing larger quads for the domain mesh requires moving singularities
further, resulting in non-aligned quadrangulations and higher dis-
tortion. T-meshes avoid the need for extreme rounding while still
allowing to obtain large patches.

4 Feature-aligned parametrization

The starting point for our T-mesh construction is the global
parametrization of [Bommes et al. 2009]. We briefly summarize the
algorithm and the main differences in our version, as the structure
of the algorithm is essential for introducing singularity constraints
described in Section 6.

The algorithm computes a global parametrization of a mesh M, i.e.,
an assignment of planar (u,v) coordinates to each triangle corner
(A triangle corner is a pair ( f ,w) where f is a triangle of the mesh
and w is one of f ’s vertices). The mapping to the plane defined by
these coordinates is one-to-one and orientation-preserving on each
triangle. In addition, we assume that the whole mesh is mapped to
a topological disk. More precisely, each vertex gets the same (u,v)
coordinates in all incident triangles, excluding vertices along a cut,
a connected graph C of mesh edges, such that M\C is topologically
equivalent to a disk. The algorithm proceeds in several steps:

1. The shape operator is estimated on all triangles, and salient
triangles are detected. For a salient triangle, principal curva-
ture directions are likely to correspond to a feature; we discuss
how salient triangles are detected below.

2. A cross-field, represented on each triangle T by the angle
θT between one of four field directions and a reference edge
of T , as well as integer matchings (Figure 3) on each edge,
is optimized to minimize a measure of field smoothness. A
matching determines corresponding directions on two trian-
gles. Matching -1 means that direction 4 in triangle 2 corre-
sponds to 1 in triangle 1. Matchings can be arbitrary (i.e., not

necessarily mapping closest directions to each other). The di-
rections are fixed on salient triangles, and the matchings are
restricted to be integers. [Bommes et al. 2009] describes an
efficient greedy mixed-integer solver that we use to solve the
optimization problem.

3. The cut C passing through all singularities of the field is com-
puted.

4. The cross-field is made consistent: the angles representing
the field are changed so that the matchings across all non-
cut edges are zero. It is possible to achieve this if the cut
passes through all singularities (we refer to [Ray et al. 2008;
Bommes et al. 2009] for details).

5. As the matchings are all zero at non-cut edges, if we arbitrar-
ily label one of the directions of the field on a triangle To uT0

(the target vector for ∇u), the label can be consistently propa-
gated to all other facets. The 90-degree rotated vectors of the
cross-field are labeled vT . The vectors uT and vT are the tar-
get values for the gradients of the parametric coordinates on
the triangle T .

6. The parametrization is computed as a solution to the con-
strained minimization problem

∑
triangles T

area(T )
(

‖∇u−huT ‖
2 +‖∇v−hvT ‖

2
)

→ min (1)

where the scale factor h sets the correspondence between the
length scale of the parametric domain and the surface.

The constraints imposed on (u,v) values correspond to transi-
tions across seams: we want the match across seams to be the
same as for the guiding cross-field: if the uT direction across
a seam is transformed to a vT direction, then the parametric
directions are transformed in the same way. More precisely,
if two triangles T and T ′ share a cut edge e, with parametric
positions of endpoint corners p1 = (u1,v1) and p2 = (u2,v2)
on one side of the cut, and p′1 and p′2 on the other side, these
are related by

p′1 = Re p1 + te, p′2 = Re p2 + te

where Re is a keπ/2 rotation defined by the matching ke of the
cross-field on the edge, and te is an unknown translation.

Figure 3: Matchings
between cross-fields in
adjacent triangles.

For models with sharp features,
apart from transition constraints,
constraints are imposed on paramet-
ric coordinates of vertices on sharp
edges: for example, if the direction
of a sharp edge is close to uT , its
vertices are constrained to have the
same v coordinates.

To make a conforming quadrangula-
tion possible, [Bommes et al. 2009]
require that the translational parts of
transition maps te to be integers. In
addition, all parametrization singularities are required to be at inte-
ger locations. These constraints ensures that the cross field formed
by ∇u and ∇v does not have infinite separating lines of the type
discussed in Section 3. When the quadrangulation is generated by
tracing the integer parametric lines on the surface, rounding ensures
that the field singularities are at quad corners and that quad edges
are continued seamlessly across cut edges of the mesh. Note that
compared to “unrounded” global parametrization that minimizes
(1) with no constraints, for large values of h rounding forces the
parametric line directions further away from the cross-field direc-
tions.

Quite often, the algorithm described above yields parametrizations
with inverted triangles; as a result the parametrization has more



(a) (b) (c) (d) (e) (f)

Figure 5: Main steps of the T-mesh patch layout construction. (a) An initial set of vertices are placed at singularities. (b) Cells with
field-aligned edges are uniformly expanded from singularities, until no further expansion is possible. (c) Holes between cells are closed by
adjusting cell boundaries. (d) Cells are split into quad patches. (e) T-joints are eliminated whenever possible by moving cell boundaries. (f)
The number and shape of the cells are optimized to minimize an energy and satisfy the constraints.

Figure 4: Facet-based (left) vs. vertex-based cross-field optimiza-
tion (right). For close salient fields, the vertex-based field optimiza-
tion produces 34 singularities vs. 139 for facet-based.

singularities than the original field, and these singularities are not at
integer locations. To solve this problem, following [Bommes et al.
2009], constrained energy optimization is repeated several times
with gradually increasing (stiffened) weights assigned to the terms
corresponding to triangles in areas with high parametric distortion.

Our algorithm differs from the algorithm of [Bommes et al. 2009]
in three main respects.

Salient feature detection. In [Bommes et al. 2009], salient feature
detection is based on thresholding per-triangle total curvature and
shape operator anisotropy (the ratio of principal curvatures). In-
stead, following [Ohtake et al. 2004; Hildebrandt et al. 2005] we
use ridges and valleys, computed from a smoothed curvature field
to identify salient facets and vertices. Ridges also require threshold-
ing, and we use ridge strength as described in [Ohtake et al. 2004].

Field optimization. While we found that the triangle-based cross-
field optimization produces good results in the case of meshes with
well-shaped triangles, we also observed that a large number of sin-
gularities is often formed for surfaces with lower triangle quality.
Instead of using tangent vectors at facets, we define a tangent plane
at each vertex v, and a cross-field at v, with a reference direction for
the angle θv chosen to be the projection of an edge connected to v
to the tangent plane. Similarly to the triangle cross-field case, we
define matchings on edges, but this time these indicate correspon-
dences between cross-fields at two incident vertices, rather than tri-
angles. For subsequent parametrization, the cross-field at vertices is
converted to a facet-based field by averaging the cosines and sines
of quadruple the angles in a common reference frame; this is jus-

tified by the 4th-order tensor formulation of [Palacios and Zhang
2007].

Translation rounding. For T-mesh construction, rounding of
translation variables and singularity positions is not fundamentally
required, as the separating lines starting at singularities can be ter-
minated at T-joints. However, we do perform a modest amount

of rounding (on the order of triangle size of the original mesh) to
make it possible to generate a fine-scale conforming quadrangula-
tion that we use to implement our T-mesh construction algorithms,
as explained in Section 5. As all singularity position changes are
relatively small, we do not need to use the mixed-integer solver for
setting singularity positions: they are all adjusted simultaneously as
in [Kälberer et al. 2007].

5 Construction and optimization of domain

T-meshes

Our goal is to construct a T-mesh with a small number of faces,
with edges following the parametric lines of the global parametriza-
tion constructed in Section 4 and satisfying a number of qual-
ity constraints. In this section for simplicity we assume that the
parametrization is fixed, and describe how the T-mesh can be con-
structed. In the next section we discuss a method for adjusting the
parametrization to eliminate some non-essential T-joints.

The main steps of the construction are summarized in Figure 5. All
steps in this section use the fine quadrangulation generated in the
previous section.

5.1 Field-aligned T-meshes and operations on them

stem

edge
non-stem

T-edge edge
non-stem

f
2

 f
3

 

f
1

 

v

Figure 6: Notation. Ver-
tex v is T-joint with re-
spect to face f1, but a
corner for f2 and f3.

To describe our algorithms we in-
troduce the basic terminology for
T-meshes. We consider quadrilat-
eral T-meshes: Conceptually, ev-
ery face of this mesh is a quad,
but some of the quad edges may
be split into several subedges by T-
joints. Each vertex is one of three
types: labeled T-joint (always of
valence 3), regular (valence 4 in
the interior, 3 on the boundary) or
extraordinary (non-T-joint interior vertices of valence different
from 4). For exactly one edge incident at a T-joint vertex v we mark
its endpoints at v as stem, and the other two as nonstem. Thus, we
say that a vertex is T-joint with respect to a face if it is incident to
two non-stem edges comprising the face (Figure 6).

We distinguish between mesh edges and T-edges. Each face has
exactly four corner vertices – those that are not T-joint with respect
to the face; T-edges are unions of edges between two sequential
corner vertices of a face. We assume that no face is glued to itself:
the starting and ending vertices of a T-edge are always distinct.

Suppose we have a global parametrization defined. A field-aligned
T-mesh is a mesh whose edges are curves on the surface satisfying
two requirements: (a) each is a subset of a parametric line; (b) the



field is nonsingular on each face, except possibly at the corners.

Field-aligned edge moves. The most basic operation used by our
algorithms is moving a T-edge or edge along the field of parametric
lines. For a parametrization with no cuts, this corresponds to simple
translation of the edge in the parametric plane. For each endpoint w
of an edge e not located at a singularity, there is a unique parametric
line ℓ(w) passing through w and orthogonal to the line of the edge in
the parametric domain. We define a valid move to be a repositioning
of the T-edge on the surface so that the new endpoints w′

1 and w′
2

are on ℓ(w1) and ℓ(w2), and move by the same amount along these
lines, and the edge remains aligned with a parametric line. Further-
more, no singularity is contained in the curvilinear rectangle with
corners w1, w2, w′

2 and w′
1.

Attached sets of T-edges. For a given T-edge e, we call a T-edge e′

attached to e, if their intersection contains at least one edge. If E is
a set of edges, then A(E) is the set of all edges attached to edges in
E. The attached set Ac(e) (Figure 7) is the transitive closure of A
for an edge e. If a T-edge e is moved while maintaining alignment
with the parametrization, all T-edges in Ac(e) need to be moved by
the same amount if no new faces in the T-mesh are created.

Figure 7: The attached set of an edge (marked in red).

In addition to simple attachment, we define regular attachment. An
edge e′ is regularly attached to e if it is attached to it, or it is on
the same parametric line and shares a regular endpoint with e. Sim-
ilarly, the regularly attached set of edges RAc(e) is defined as the
transitive closure of the regular attachment relation.

Implementation. While all operations with T-edges can be imple-
mented by tracing parametric lines on the surface, the implementa-
tion is considerably simplified by generating a fine (with quad size
on the order of triangle size or smaller) quadrangulation of the orig-
inal surface using the global parametrization. The downside of this
approach is that it requires a moderate amount of rounding at the
parametrization stage. In practice, we found that the quadrangula-
tion can be chosen to be sufficiently fine for this not to lead to folds
not removable by stiffening (see Section 7). In this case, the edge
moves are no longer continuous but are discretized at the resolution
of the fine quad mesh.

5.2 Initial T-mesh construction

As singularities of the field have to be vertices of the mesh, it is
natural to start the construction using singularities as the initial set
of vertices with no faces attached.

Singularity cell expansion. In the absence of parametric lines to
align with, a natural and commonly used approach would be to use
a Voronoi partition on the mesh to get a mesh of k-gons, and apply
one step of Catmull-Clark subdivision. We mimic a simple Voronoi
partition construction but force the edges of cell to be field-aligned.
An initial curved k-gonal patch is defined by tracing integral lines
of the parameterization gradient very close to singularity. (On the
quad mesh, this tracing reduces to following edges along the fine
quadrangulation in 1-neighborhood of the singularity.) If the singu-
larity index is i/4, i ≤ 2 then k = 4− i. We refer to k as singularity
valence. As a result we get a set of field-aligned edges, which are
moved away from the singularity at a constant speed in parametric
units, until the T-edges of the cell become attached to other T-edges
and cannot be moved without shrinking other cells, or reach the

mesh boundary.1

Unlike Voronoi cells, the field-aligned cells need not fill the whole
mesh, leaving some hole quads uncovered. It is possible to show
(see the Electronic Appendix) that the local configuration of edges
at any hole quad is of the type shown in Figure 8a.

Figure 8: (a) Closing a hole in the initial mesh; (b) regularization
step

Hole closing. Most of these holes can be eliminated by moving
some of the cell boundaries. For the hole-elimination step, the
hole quads are sorted by size, with small holes first. A single hole-
closing operation, shown in Figure 8a, proceeds as follows. First,
a pair (e1,e2) of opposite edges bounding the hole is selected. We
select the pair of edges along the longer parametric dimension of
the hole quad, with parametric distance d between them. The at-
tachment sets Ac(e1) and Ac(e2) are either disjoint or coincide, as
they are defined as transitive closures. In the latter case, we say that
this pair of edges fails the loop condition (Figure 9), and consider
the other pair of edges of the hole quad.

If the attachment sets are distinct, we determine the maximal valid
move distances dmax

1 and dmax
2 for Ac(e1) and Ac(e2), in the direc-

tion towards the interior of the quad, defined as minima of the valid
move distances of the edges in each set. If dmax

1 +dmax
2 ≥ d, we set

d1 = min(dmax
1 ,d/2), and d2 = d −d1, and move the attached sets

Ac(e1) and Ac(e2) to close the hole. If dmax
1 + dmax

2 < d, no valid
move in this direction closes the hole, and we consider the opposite
pair of edges. If neither pair can be used, we create an additional
cell to fill the hole. The result of the initial T-mesh construction is
a parametrization-aligned T-mesh, but with k-gonal faces.

Figure 9: Loop condi-
tion.

Once all cells are expanded to the
maximal extent, and all holes are
filled, the k-gonal cells are split into
parametrization-aligned quads, by
tracing k parametric lines from the
central singularity to the bound-
aries of cells. All three-valent ver-
tices of the resulting mesh with
two incident edges along the same
parametric line become T-joints. If
there are no holes in the mesh, the total number of cells in the mesh
we obtain is ∑singularity v(4−4iv), where iv is the index of the singu-
larity at v. The number of holes is bounded from above by the same
number, as there is at most one hole at each k-gonal cell corner.

T-mesh regularization. The regularization step reduces the num-
ber of T-joints in a mesh by an operation similar to closing holes,
collapsing some edges separating two T-joints (Figure 8b). We find
all edges in a mesh with two non-stem endpoints w1 and w2 at T-
joints, such that the stem edges at these T-joints are on opposite
sides of the edge. These edges are sorted by length, with shorter
edges eliminated first. Let e1 and e2 be the stem edges at w1 and
w2. Then we apply the same procedure as for the hole filling to the

1Note that while the shape of an initial cell of this type on a regular grid

is identical to an L∞ disk (i.e. a square), resulting cells are not Voronoi cells

with respect to L∞ metric: Our cells always have coordinate-aligned edges,

while the L∞ metric cells may have diagonal edges.



pair (e1,e2) except we use the regularly attached sets RAc(e1) and
RAc(e2) instead of the attached sets, to avoid creating new T-joints
in the process of removing old. A similar RAc(e1) 6= RAc(e2) needs
to be checked to verify validity of the move.

5.3 T-mesh optimization

The operations used in construction of the initial mesh are pure
connectivity operations, not taking into account any quality criteria,
other than reducing the number of T-joints at the regularization step.
As the next step we optimize the patch layout. Our overall goal
is to create the largest possible patches, while maintaining good
patch quality. Our approach is similar to mesh simplification and
improvement techniques: we define a set of operations on the set
of faces of the T-mesh preserving the validity of mesh, and define
an energy we want to minimize by a sequence of these operations,
while satisfying a set of constraints.

Energy and constraints. We choose an energy favoring larger
well-shaped patch sizes; for an individual patch, we use its
perimeter-area ratio to balance the priorities of avoiding small
patches while favoring square-shaped patches. Since we quadran-
gulate finely to minimize distortion due to rounding, we approxi-
mate actual lengths by parametric lengths. The energy of individ-
ual patches needs to be combined in a global energy function; we
found that the ℓ1 norm of the vector of parametric perimeter-area
ratios yields the best results compared to ℓ2 and ℓ∞:

Earea = ∑
P

1

L(P)
+

1

W(P)
= ∑

P

P(P)

2A(P)

where the summation is over patches P; and L, W, P, and A are
the parametric length, width, perimeter, and area operators, respec-
tively. The constraints are as important as the energy itself: the
T-mesh is likely to be useful in a much more limited context with
no constraints on patch quality. The choice of constraints depends
on the goal of constructing the T-mesh. If the primary goal is to
partition the surface into a small number of logically rectangular
domains, similarly to [Carr et al. 2006] or [Eppstein and Erickson
1999] the optimization can be done without constraints. If, how-
ever, we would like to use the T-mesh as a coarse control mesh for
a high-order or multiresolution surface representation, controlling
the approximation error and patch aspect ratios are likely to play an
important role.

This leads us to our two main constraints (additional optional con-
straints, e.g. maximal patch size can be imposed if desired).

Geometric approximation constraint. For each face of the T-
mesh, we estimate how well the surface can be approximated by
a smooth piecewise polynomial surface on this patch. While we
could use a globally smooth surface approximation directly (T-
NURCCs or PT-splines), determining the precise approximation
error is expensive as it requires solving a global linear system. In-
stead, we use a simple Bezier curve network fit to approximate the
per-patch error locally and efficiently. For each face, we fit 8 Bezier
curves (4 aligned with each parametric direction) to surface points
uniformly sampled in the parametric domain (we use an 8×8 grid
of samples). Each Bezier curve interpolates the boundary samples,
so the fit reduces to solving a 2× 2 system of linear equations per

curve. We compute the approximation to L2-norm of the error εP

of the fit, as the sum

ε
2
P ≈

1

2

A (P)

n2

3

∑
i=0

7

∑
j=0

(

bi(h j)−p2i, j

)2
+

3

∑
j=0

7

∑
i=0

(

b j(hi)−pi,2 j

)2

where pi j are the samples, and bi(t) and b j(s) are the Bezier curves
along two parametric directions, with parameters t and s in the
range [0,1] on the face, and h = 1/7.

Patch aspect ratio constraint. While in many cases constrain-
ing geometric error results in automatic restrictions on the aspect
ratio, the patches on nearly cylindrical areas of the surface may be-
come very long. In other cases, the energy may favor creating very
thin and narrow patches in flat areas to increase the area of nearby
patches. To limit these effects we impose an additional constraint
on the patch aspect ratio.

T-mesh modification operations. We use three operations for T-
mesh modification: two connectivity-modifying, and one only af-
fecting the patch size, two of which have a single length parameter.

refinement extension relocation
Figure 10: Refinement, extension, and relocation operations

The Refinement operation acts on a (T-edge,face) pair (e, f ), split-
ting the face f into equal halves by inserting a new edge along the
parametric direction perpendicular to e, generally creating two T-
joints (Figure 10). Refinement always decreases the patch size, and
increases the number of patches.

The Extension operation acts on a T-edge/face pair (e, f ), extending
the face f across the edge e into adjacent faces. It increases the
size of one patch, while other patches shrink, or even eliminated.
A face f (Figure 10) is extended to the maximal length possible
across the T-edge e, so that we do not modify faces with no T-
edges attached to the T-edge e. Depending on local connectivity, it
may increase or decrease the number of patches, although it most
commonly decreases the energy most when it reduces to a merge of
several faces. We define this operation in a more general way, as we
found that in some cases this less constrained operation produces
better quality T-meshes.

The Relocation operation acts on an edge e. The attachment set
RAc(e) is found and all edges in the set are moved by the same
distance a, positive or negative, not exceeding the maximally valid
distance in this direction.

Complete optimization algorithm. We impose the constraints us-
ing a multiplicative penalty method (cf. [Torn and Zilinskas 1989])
by combining them with the energy function:

Etotal = ∑
P

P

2A(P)
(1+w(αP/α0 −1))(1+w(εP/ε0 −1))

where αP is the parametric domain aspect ratio of patch P, εP is
the geometric error estimate described above, α0 and ε0 are user-
specified upper bounds for the constraints. The function w(t) is
chosen to be zero if t < 0, and increases rapidly for t > 0, we use

t3. Multiplicative penalty functions are similar to the more com-
mon additive penalties (taking log of the energy converts them to
additive) but have the advantage of not requiring to choose a proper
scale factor.

The complete optimization algorithm proceeds as follows.

For each (edge,face) pair of the T-mesh, we consider Refinement
and Extension operations, and for each edge the Relocation opera-
tion. For each parametrized operation (Extension and Relocation)
we determine the parameter range corresponding to valid moves,
and find the parameter value corresponding to the maximal decrease
in energy. Among all operations, we choose the operation that re-
sults in the maximal decrease in energy, and perform this operation.
The process is iterated until the energy cannot be further decreased.
Since the energy decreases at every step, the algorithm always ter-
minates.



(a) (b) (c) (d) (e) (f) (g)

Figure 11: Singularity alignment process: a: detecting a mismatch between adjacent singularities; b: a part of the singularity adjacency
graph (observe “near-misses”); c: T-mesh before alignment; d: singularities and separating lines after alignment; e: T-mesh after alignment;
f: holes3 before alignment; g: holes3 after alignment with no T-joints.

Reevaluating all possible operations at every iteration would be pro-
hibitively expensive. Instead, we update the invalidated operations
incrementally.

We assign a timestamp to all edges and faces of the mesh (initially
zero). In the beginning for all faces and edges, we generate all po-
tential operations, compute the energy change resulting from each
operation, and place the operations on the priority queue, with the
energy decrease as the priority (energy-increasing operations are
discarded). All operations are also given a timestep zero.

Then we repeatedly perform the operation with highest priority, un-
less the faces and edges it affects have a later timestamp than the
operation, in which case it is discarded. All edges and faces mod-
ified as a result of the operation get a new timestamp t, and a new
set of operations is generated for these facets and edges and pushed
on the priority queue with timestamp t, if they decrease the energy.

6 Singularity alignment

The T-mesh construction algorithm of Section 5 is limited by the
fact that the parametrization is fixed, and patch boundaries stay
aligned with parametric lines. However, only important feature
lines (sharp edges in particular) are fixed by the geometry. The
cross-field and the parametric lines of the global parameterization
away from features can be modified to improve the quality of the
mesh, and decrease the number of T-joints. The problem of separat-
ing lines passing within short distance of each other, (discussed in
Section 3; Figure 2, right), can be reduced by adjusting the global
parameterization.

Overview. We observe that ideally we want the separating lines
starting at a singularity to terminate at a nearby singularity, if it
passes sufficiently close to it. The algorithm that we describe in
this section identifies close singularities and detects “near-misses”,
constructs the singularity adjacency graph, and solves for a new
parametrization with additional constraints that force perfect align-
ment for identified pairs; the steps of the process are shown in Fig-
ure 11.

Defining a singularity adjacency graph. We observe that the first
step of the initial T-mesh construction algorithm, with minor modi-
fications, provides a mechanism for detecting “near-misses” of field
separating lines. As before, we expand a cell from each singular-
ity. However, instead of growing all cells at once, we expand the
cell, until each edge reaches an adjacent singularity, a boundary, or
another edge of the same cell. Singularities on the boundary of the
maximally expanded cell for a singularity c are considered adja-
cent to c. This relation is not necessarily reciprocal. We construct a
singularity adjacency graph connecting by edges all adjacent singu-
larities. Example graphs are shown in Figure 11 and 18. Each edge

(c1,c2) is annotated with a separating line mismatch (the parametric

length from the singularity c2 to the closest parametric line starting

at c1) and distance (the parametric L∞ distance between the singu-
larities) illustrated in Figure 12.

We want to change the parametrization so that a parametric line

starting at c1 passes through c2 i.e., so that the mismatch becomes

zero at a maximal number of edges of the adjacency graph.

misaligned pair parametric domain after alignment

Figure 12: A path connecting two misaligned singularities before
and after alignment.

Constructing constraints. If a mesh can be parametrized without
seams, the requirement of singularity alignment easily translates
into a constraint on parametrization: two singularities should be on
the same parametric line, i.e. share the same u or v value. The
constrained optimization framework of [Bommes et al. 2009] that
we are using makes adding such constraints easy.

For parametrizations with cuts, the situation is more complicated.
A parametric line on the surface undergoes a jump to a different
point and direction in the parametric space when it crosses a cut
(Figure 12). While the rotation is entirely determined by the cross-
field to which the parametrization is aligned, the positional jump
depends on the parametrization itself. When we add a constraint on
singularity coordinates, the parametrization may change, changing
the jumps at cut edges. The resulting constraint will depend not

only on the pair of singularities (c1,c2), but also on the (variable)
translational parts of the transforms at the cut edges we cross, te in
Section 4. E.g., if the cut is crossed once, and the crossing is at a
cut edge e with associated transform p′ = Re p+te, where p = (u,v)
is a parametric point, then the constraint is (Re p1 + te)u = p2

u, if the

aligned parameter line at c2 is along the u coordinate direction, and

p1 and p2 are parametric positions of c1 and c2), and the subscript
u means taking the u coordinate.

In the general case, consider a path crossing cut edges ei i = 0, . . .m
between c1 and c2. Assuming the final direction of the path is u,
then the complete constraint has the form

(

(Πm
i=0Rm−i)p1 +

m

∑
i=1

Πm
j=iRm− jti

)

u

= p2
u

R1,t1

R2,t2

p1

p2

Figure 13: Forming a con-
straint for a pair of singular-
ities.

we still have a single lin-
ear constraint, but involving a
larger number of variables ti,

p1 and p2 (Figure 13).

We observe that the form of
the constraint depends on the
choice of path between singu-
larities. One can show that for



two paths P1 and P2 connect-
ing two singularities and such
that the loop formed by P1 and
P2 does not enclose any singularities and encloses a topological
disk, the constraints are equivalent (see the Electronic Appendix,

Proposition 1)2 This allows us to choose a path between singular-
ities consisting of two segments of parametric lines, one passing
through c1 and the other through c2, tracing the boundary of the
rectangle with c1 and c2 at diagonal corners.

Filtering singularity constraints. The singularity constraints can
be redundant. As these are homogeneous constraints with zero
right-hand side, they cannot be incompatible, so we eliminate the
redundant ones with Gaussian elimination.

We choose a threshold for the minimal aspect ratio of the rectangle
for an adjacent pair of singularities, and remove all constraints ex-
ceeding this threshold (we set it in the range 5-10); choosing this
threshold high enough ensures that the field does not deviate too
far from soft creases. A singularity can satisfy only a single con-
straint along each outgoing parametric line, so if several constraints
correspond to a direction, we choose the one with the closest singu-
larity (smallest parametric L∞ distance). The singularity constraints
can interact with sharp edge constraints: if a singularity has a sharp
edge constraint in a particular parametric direction, we remove sin-
gularity constraints in this direction.

7 Results and Comparisons

Our algorithm is automatic once various thresholds are set. Other
than mixed integer quadrangulation parameters, we use (1) aspect
ratio threshold for cone alignment pair selection, (2) desired max
aspect ratio of T-patches, and (3) max geometric approximation
error. Optionally, manual adjustments can be made to singularity
placements as described in [Bommes et al. 2009]. This was done
for the maxplanck head to make the placement of singularities
more symmetric.

We evaluate the results of our algorithm in several ways. The main
criterion is the number of patches in the final mesh subject to the
constraints on aspect ratio and geometric approximation quality.

For several meshes, we compare domain T-meshes we obtain to the
minimal number of patches we could obtain in a conforming mesh
using mixed-integer quadrangulation, with the same feature field
and the number of stiffening iterations bounded by 40. We observe
that in most cases, especially involving alignment, the main restric-
tion on quad size is due to the lack of robustness with respect to
large rounding. Numerical data on the number of faces in different
meshes are presented in Table 1, and Figures 16 and 15 show the re-
sults for several meshes. We emphasize that these coarsest meshes
are not necessarily suitable as control meshes for a T-spline or other
fit. Rather, these are useful as seamlessly and smoothly aligned
rectangular geometry images, for texturing, or solving equations on
the surface.

Periodic Global Parametrization (PGP) [Ray et al. 2006], does not
have a target quad size limitation due to foldovers PGP avoids the
need for rounding, and the need for stiffening, but as the target
quad size becomes coarser, the quality and alignment of the mesh
rapidly deteriorates. Figure 14 shows a parametrization obtained
using PGP with approximately the same number of quads as our
T-mesh shown in Figure 16. (Caveat: the best effort was made to
smooth the field for the PGP parametrization, but it is unclear if the
quality of the field matched the quality of the cross-field we used

2Because the singularities are located on the cut by construction, there

is an ambiguity in determining the crossed cut edges for the paths Pi. This

ambiguity is resolved by defining the starting and ending point of each path

as infinitesimally displaced from the singularities along the parametric line

towards the other singularity.

for our result.)

For high-order approximation, the geometric error constraint has to
be taken into account. Figure 17 shows the effect of decreasing the
geometric error constraint for one model and decreasing the aspect
ratio constraint.

Figure 14: PGP parameter-
ization with target size cho-
sen to match our number of
patches in Figure 16

In Figure 18 we show the full
singularity adjacency graph
and its pruning. Singularity
alignment is highly useful for
eliminating most of the near
misses in matches. At the
same time, we observe that
one cannot expect to elimi-
nate most of the T-joints in the
mesh using this method due to
two reasons. First, we filter
the singularity alignment con-
straints by feasibility and by
the mismatch-to-distance ra-
tio, to avoid deviation from
the feature field. As a result, the total number of valid alignments
we enforce is relatively small, compared to the total number of T-
joints. Second, the resulting mesh is optimized using our general
T-mesh optimization procedure, which has to trade T-joint creation
for better geometric approximation or aspect ratio.

We observe that the number of control points in the T-mesh and
the number of patches is within a factor of 2-4 of the number of
singularities in the original mesh. We believe that with constraints
imposed on patches it is difficult to improve on these numbers: the
best possible number one can expect is approximately equal to the
number of singularities. In this case, every quad of the mesh is
supposed to have corners at singularities, which is extremely diffi-
cult to achieve for typically highly nonuniform singularity locations
produced by feature-aligned fields.

Fitting T-splines. Once the T-mesh is constructed it can be used
to define a T-spline/T-NURCCs surface which can be fitted to the
original mesh. Our approach to fitting T-spline surfaces is identical
to that of [Li et al. 2006], with two important differences. Because
our T-mesh is constructed by tracing parametrization lines, the sums
of parametric intervals on the opposite sides of each face are guar-
anteed to be equal if we simply use parametric length to determine
the knot interval for each edge. This eliminates the need to intro-
duce the extraordinary vertices at T-joints which were necessary to
handle the T-meshes constructed using PGP.

The second difference is that we pass the information about sharp
edges to the T-spline construction, and insert degenerate faces with
zero knot intervals along sharp edges.

We obtain meshes suitable for fitting in our framework by set-
ting the geometric error to 0.02 of the model diameter. Figure 19
shows the fit for several models. The L2/L∞ relative errors for
the models shown in the figure are: for joint, 0.08%/2%, for
sculpt, 0.1%/2%, for botijo, 0.1%/1% and for fertility,
0.06%/0.5%.

Performance. Performance numbers for different stages of the pro-
cess are included in Table 1. The time needed for construction of
the initial T-mesh patch layout is negligible in all cases and we ig-
nore it. For larger meshes, in general, the dominant cost is mixed-
integer field optimization (vertex-based version is more expensive
than facet, and the running time of mixed-integer optimization in-
creases faster than linearly due to correlation in the number of ver-
tices and number of integer variables). This potentially may be al-
leviated by rounding in groups or the method of recent paper of Ray
and Levy [Ray et al. 2009]. For some meshes, the parametrization
cost dominates, because of a large number of stiffening iterations.
For smaller meshes, the cost of field optimization is far lower, and



unaligned sing. aligned with a.r. constraint aligned with geom. constraint

Model faces Nq Ns time f ld niter time/iter NQ NP Nv T-joints pairs NQ NP timeP Nv T-joints NP timeP Nv T-joints

holes3 11776 154 16 25.1 1 0.590 15943 47 69 52 29 13211 20 0.173 16 0 232 53.5 401 346

sculpt 7342 1255 16 9.00 2 0.295 11553 65 106 82 24 10792 38 0.725 58 36 104 12.9 146 88

joint 8766 776 23 8.85 2 0.629 13715 51 70 42 23 13440 45 0.701 59 32 68 9.17 100 68

fandisk 14454 4185 32 27.1 8 1.02 54421 63 93 56 6 51897 50 1.31 71 38 153 15.3 193 76

casting 36828 47845 98 250 7 12.1 756338 272 403 294 51 745319 233 70.7 326 218 297 114 429 296

screw 9596 1034 10 10.8 4 1.36 13384 40 74 60 4 14353 18 6.72 30 20 182 15.4 235 102

rockerarm 20088 1076 24 49.7 4 1.50 16311 87 141 108 24 16129 54 1.58 79 50 195 73.3 276 162

screwdriver 54300 906 20 352 11 12.94 5445 55 94 74 18 5306 40 1.59 62 40 118 41.5 165 90

maxplanck 50790 2198 15 555 9 1.82 36725 57 96 72 12 36725 50 2.92 84 60 671 232 1224 1086

bojito 82332 1837 72 960 6 3.02 32974 351 523 360 94 31987 165 8.98 230 146 403 76.7 554 318

fertility 27954 914 43 152 8 1.05 14211 172 265 194 39 14211 146 1.31 247 188 420 67.5 581 334

elephant 49918 6395 96 468 31 5.48 59342 396 635 486 44 57762 281 4.44 449 344 366 42.6 587 450

Table 1: Column titles: Nq is the number of quads in the coarsest quadrangulation; Ns is the number of singularities; time f ld is the time to
smooth the cross-field; for parameterization, niter is the number of stiffening iterations and time/niter is the average time taken per iteration;
NQ is the number of quads in the fine quadrangulation used for patch generation; NP is the number of patches; timeP is the time to generate
the T-mesh; Nv is the number of vertices in the T-mesh.

T-mesh layout may be the most significant expense. The cost of T-
mesh optimization strongly depends on the number of patches pro-
duced, so it raises substantially, when lots of small patches are re-
quired. For example, for the maxplanck mesh, which has a lot of
geometric detail at different scales, a very large number of patches
is needed to obtain the same error. For this type of meshes, direct
high-order patch approximation is not appropriate, and a displace-
ment map or a hierarchical approximation is needed so that fewer
patches can be used. The cost also raises if a very fine quad mesh is
used (as it was necessary for casting). This is not a fundamental
problem of the method, and it is primarily due to a suboptimal im-
plementation of searching for an optimal parameter values for the
parametrized optimization. We note that this numbers are strongly
implementation, compiler and hardware dependent: for example, in
our setup we were unable to match field optimization timings pre-
sented in [Bommes et al. 2009], although the same MI code was
used. The T-mesh optimization algorithm complexity is hard to es-
timate theoretically, so its scaling is difficult to predict. We have
observed that it does not depend much on the number of singulari-
ties, but has a stronger dependence on geometric complexity of the
shape (as more complex shapes require finer patches).

Limitations. There are several important limitations to our method.

Field quality. To the greatest extent, the quality of the T-mesh is
determined by the quality of the field. Current techniques do not
allow automatic enforcement of symmetries, and in many cases
lead to unnecessary bending and twisting of patch boundaries. (of-
ten observed for organic shapes lacking sharp edge alignment con-
straints).

In an effort to eliminate unnecessary T-joints, our technique for
singularity alignment changes parametric placement of singulari-
ties, but does not alter their position on the surface. Adjusting sin-
gularity positions whenever possible (if a singularity is located in
an isotropic flat area) has potential for considerably improving the
quality of the layouts.

Optimality. There is no guarantee that our result is close to the
global optimum. For smaller meshes, the results seem hard to im-
prove. For more complex meshes better quality seems possible. In
all cases, a significant reduction in energy was achieved.

Robustness. There are three limiting factors in robustness of our
method. The most substantial restriction is the need to obtain a lo-
cally one-to-one parametrization. Even with no rounding, for com-
plex models with sharp features, foldovers in the parametrization
are common, and stiffening iterations are not guaranteed to elimi-
nate these. Another problem is detection of sharp features. In this
work, we relied on the ability to tag sharp features based on the
dihedral angles, or on having relatively rounded features. Finally,
the global impact of sharp edges and cone alignment is difficult to
predict as these constraints could force the parameterization to col-
lapse due to global dependencies. The T-mesh construction is quite
robust, but can produce excessive number of small patches for low-
quality input fields.

Scalability. While we were able to obtain parametrizations for
meshes of moderate size (approximately 100 thousand triangles),
the main scalability bottleneck is the field optimization. The run-
ning time of the mixed-integer solver for larger meshes is domi-
nated by the Gaussian elimination step for the constraints. Further-
more the number of iterations of the solver is proportional to the
number of singularities, which, in turn, grows with geometric com-
plexity of the model.

Figure 15: The screw and screwdriver with patches of maxi-
mal size, and obeying geometric error constraints; the elephant
with geometric error optimization.

8 Conclusions

The method presented in this paper demonstrates the possibility
of constructing coarse domain meshes while maintaining feature
alignment, if T-joints are allowed in the mesh. Domain meshes
constructed in this way are a natural fit for T-spline surfaces and
related high-order constructions. Clearly, our T-mesh construction
algorithm can be improved and extended in many ways to achieve
more compact T-mesh structures with fewer nonessential T-joints.
Furthermore, we observe that in many ways the quality of patch
layouts is determined by the initial cross-field, and improving the
quality of these fields is an important direction for future work.

While many algorithms and constructions for conforming meshes
can be easily extended to T-meshes, overall, the theory and algo-
rithms for this type of meshes is far less developed, presenting many
interesting questions for future research.
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ally smooth parameterizations with low distortion. ACM Trans.
Graph. 22, 3, 350–357.

KOVACS, D., MYLES, A., AND ZORIN, D. 2009. Anisotropic har-

monic quadrangulation. In Symposium on Geometry Processing
2009 Poster.

LEE, A., SWELDENS, W., SCHRÖDER, P., COWSAR, L., AND
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Proofs

We include two propositions formalizing statements in Sections 5
and Section 6 of the paper.

We assume that the parametrization is aligned with the boundary,
with no singularities on the boundaries. Boundary corners may be
present; for a corner, two boundary segment meeting at the corner
are aligned with different parametric directions. We also assume
that at least one cell exists, and the mesh is connected.
Proposition 1. All holes are quads; each hole T-edge is simple, i.e.
consist only of one edge; each edge is a stem edge for exactly one
vertex of the hole. A hole cannot have border edges.

Proof. A hole H contains no singularities in the interior by con-
struction; therefore, the field inside the hole is regular and can be
mapped to a pair of fields with axis-aligned straight integral lines in
the plane, so it is sufficient to consider polygons with axis-aligned
sides in the plane. For a T-edge E, we call an interior corner v free,
if it does not prevent the edge from moving, (cf. Figure 20), If E
contains the stem of v, v is regular or it is a single cell corner. Bor-
der corners (both incident edges of H are on the border) are not
free. A whole T-edge can be moved if both its corners are free, so
at least one vertex of every T-edge has to be not free. As it is clear
from Figure 20 a corner of the hole is free for at least one incident
T-edge unless it is a border corner.

F

F F

N

F

F

N

F

N

N

cell corner regular T-joint border-int. border

Figure 20: Types of corner vertices; F and N indicate free and
non-free half-corners; mesh border is shown in green.

First, we use a counting argument to show that if no edge can
be moved, the hole can have only T-joint corners. We call a (T-
edge,corner) pair, where the T-edge contains a corner, a half-corner.
Each half corner is either free or not. Let E int be the number of
of interior T-edges, Eb be the number of border T-edges, V int the

number of interior corners, V b be the number of border corners,
and V bi the number of border-interior corners with exactly one in-
cident border T-edge (these have one free and one non-free half-
corner). Then on the one hand, as each T-edge has no more than
one free half-corner, and border edges have exactly two, the total
number N of free half-corners is no more than E int . On the other
hand, each interior corner has no less than one free half-corner,
border corners have exactly zero, and border-interior corners have

exactly one, with the total being no less than N2 = V int +V bi. It

is easy to see that E int = V bi/2 +V int (each continuous sequence
of m interior edges which starts and ends at a border, has m− 1
border corners and 2 border-interior corners). We conclude that
V int +V bi ≤ N ≤ V int +V bi/2. This is only possible if V bi = 0

(no border edges) and N = V int , in other words, as the number of
free half-corners is exactly half of the total number of half-corners.
From the fact that interior corners have at least one free half-corner,
and T-edges no more than one, it follows that each corner and each
T-edge has exactly one. In particular, there can be no concave or
regular corners. As there are no concave T-joints, the hole has to be
a quad.

Next, we observe that each T-edge cannot have any interior T-
vertices, i.e. is a simple edge. Indeed, if the endpoints of an edge of
a T-edge are both non-corner T-joints, then it can be moved. There-
fore, we can have no more than a single non-corner T-joint. If an
interior T-joint v is present, and one of the corners c is free, then
the edge (v,c) can be moved. We conclude that all T-edges of H are
simple with one free and one non-free half-corner, and all corners
are T-joints. Direct enumeration shows that the the only possibility

is the arrangement shown in Figure 8.

Proposition 2. Let p0(t) and p1(t), t ∈ [0,1] be two embedded ho-
motopic paths on the mesh consisting of linear segments on each
triangle, with a finite number of linear segments and with the same
starting and ending vertices, p0(0) 6= p1(1). If the simply con-
nected domain bounded by these paths does not contain singulari-
ties, then the cumulative transformation along both paths are iden-
tical.

Proof. Let P(s, t), P(0, t) = p0(t), P(1, t) = p1(t) be a homotopy
between paths. Without loss of generality, we assume that P(s, t)
has the same properties as p0(t) (embedded, linear on each triangle,
with a finite number of linear segments) and for all s (in particular
does not self-intersect), and does not pass through more than one
seam vertex, other than starting and ending points. Suppose for
s = s0, P(s, t) passes through a seam vertex p; we consider how the
cumulative transformation changes between P(s− ε, t) and P(s +
ε, t) for a sufficiently small ε . Consider the connected part of the
path P(s0, t) inside a δ -neighborhood of p (Figure 21) containing p.
For sufficiently small δ and ε , P−ε = P(s−ε, t) and Pε = P(s+ε, t)
have no more than one segment in T ∩Nδ (p), for each triangle T
incident at p; these paths also have to start and end in the same
triangles, T0 and Tm.
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Figure 21: Left: Homotopy paths near a vertex. Right: transition
maps in parametric plane.

As each path can pass to the next triangle only by crossing an edge,
and can visit each triangle only once, there can be only two dis-
tinct sequences of transformations accumulated along each, corre-
sponding to two possible ways of reaching Tm from T0, by walking
around vertex p. As the paths cross exactly the same edges outside
the δ -neighborhood of p, it is sufficient to show that these trans-
formations are the same for any valid choice of transition maps.
Let e0, . . .ek−1 be the sequence of seam edges at p, enumerated
counterclockwise, and e0, . . . ,em, m < k, are crossed by P−ε . Then
the other possible sequence is ek−1, . . . ,em−1 (note that the edges
are in the inverted order). Observe that for a valid one-to-one
parametrization of the domain obtained from the surface by cut-
ting along the seams, vertex p maps to k points in the parametric
plane, each associated with a sector between two seam edges, and
each seam edge maps to two edges. The translational part of each
transition map Ci is just the displacement between the positions
(ui,vi) of p for sectors i and i + 1 (this is enforced by constraints
in the system). All such displacements add up to zero for any ver-
tex. The rotations are rotations in the parametric plane aligning the
two images of each seam edge. For a non-singular point, as the
index reflects the rotation of the cross-field about the loop around
the point, the composition of all rotations should be an identity.
The combination of these observations leads to the conclusion that
the composition of all transformations around a vertex is identity:
Ck−1 ◦ . . . ◦C0 = I, for any choice of translations, as long as these
satisfy the constrained system. If Pε corresponds to the sequence of
edges ek−1, . . . ,em−1, then the corresponding composition of trans-

formations is C−1
k−1 ◦ . . .◦C−1

m−1 = (Cm−1 ◦ . . .◦Ck−1)
−1, which co-

incides with C0 ◦ . . .◦Cm−1.


