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Abstract

A polar configuration is a triangle fan in a quad-dominant mesh; it allows for many mesh lines to join at a single polar vertex.
This paper shows how a single tensor-product spline of degree (3, 6) can cap a polar configuration with a C2 surface. By design,
this C2 polar spline joins C2 with surrounding bi-3 tensor-product splines and thereby complements algorithms that smoothly cap
star-like, multi-sided regions.
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(a) star-like layout (b) Polar layout

Fig. 1. (a) A star-like mesh-configuration covered by n patches. (b)
A polar configuration covered by one polar spline.

1. Motivation

CADmodeling systems represent parametric surfaces by
a finite number of quadrilateral spline patches in tensor-
product B-spline form. To generate surfaces of arbitrary
genus in this representation, a number of algorithms have
been devised that smoothly complete a piecewise bicubic
C2 surface, by filling-in star-like, multi-sided holes with n
patches as in Fig. 1. But, as pointed out for example in
[KP07a], these constructions are not well-suited for high-
valence neighborhoods arising from extruded, high-valent
or periodic features as in Fig. 2 and 11.Wheremany patches
come together, it is more natural to have a triangle fan
join many parameter lines at a common pole similar to the
latitude/longitude connectivity at the poles of the earth. If
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such a polarmulti-sided hole is to be covered by subdivision,
[MP09] gives simple rules that create a C2 completion of
degree 3. But, except for display, subdivision algorithms do
not readily fit into the major CAD modeling frameworks.
We therefore develop a new C2 Polar Spline that, for a
polar configuration,
— consists of one tensor-product spline of degree (3,6),
— is easy to construct, by formulas (4)(5)(6) of Section 6,
— is easy to analyze, and
— is bi-3 C2 compatible, that is, meets C2 with surrounding
C2 bi-3 tensor-product splines.
In more detail, the C2 Polar Spline is of degree 6 in the
periodic direction and of degree 3 in the radial direction.
One boundary is collapsed to a single point p0, the pole (cf.
Fig. 3 and 6c). Since the spline is C2, the degree 6 periodic
direction has 4-fold knots. The knots in the radial direction
are repeated so that p0 is interpolated. The spline is derived
by explicitly relating its control points to a second-order
expansion of the surface at the pole in a special shape basis.

Overview After reviewing related literature, formally
stating the challenge, pointing to observations that enable
the construction and laying out the tools (Sections 2–5),
we formally state the algorithm in Section 6. Section 7
proves curvature continuity and bi-3 C2 compatibility of
C2 polar splines. Section 8 explains what alternative con-
structions are possible and why we chose the particular set
of rules. Section 9 explores the relation of polar splines to



(a) (b) (c)

Fig. 2. Polar Chair. (a) A mesh with three polar configurations
(arm-rests,center), as well as star-like (Catmull-Clark-type) extraor-
dinary vertices, defines a smooth manifold (c) consisting of a small

number of tensor-product splines. (b) Uniform bi-3 splines are gold,
C2 polar splines are gray; star-like-neighborhoods can be covered by,
for example, by one of [Pra97,KP09b,LS08] (green).

polar subdivision. Section 10 concludes with a gallery of
shapes and its discussion.

2. Related work

A number of constructions yield curvature-continuous
free-form surfaces from coarse control meshes, for exam-
ple [Pra97,Rei98,Pet02,YZ04,Lev06,KP07b,KP09b,LS08].
Techniques that generate C2 spline surfaces on arbitrary
quad meshes include Prautzsch’s free-form splines [Pra97]
and Reif’s TURBS [Rei98], both of degree bi-6; Karčiauskas
and Peters’ guided spline surfaces [KP07b,KP09b]; and
Loop and Schaefers’ bi-7 construction [LS08], improving
[Loo04]. Ying and Zorin’s approach [YZ04] generates sur-
faces from quad meshes by joining locally-defined polyno-
mials via exponential blending functions. Bohl and Reif
[BR97] use a careful reparameterization to analyze con-
structions with multiple collapsed layers of control points.
All above constructions represent parametric surfaces by a
finite number of patches.
Quad-based subdivision algorithms, while enabling free-

formmodeling with simple implementations, do not readily
fit into this framework. And it has proven difficult to gen-
erate C2 surfaces based on subdivision for star-like config-
urations. Levin [Lev06] blended Catmull-Clark subdivision
surfaces near extraordinary vertices with polynomials to
produce curvature continuity at extraordinary points. For
triangle meshes, Zorin [Zor06] similarly blended Loop sub-
division surfaces with polynomials, but used blending func-
tions that were themselves subdivision surfaces. At present,
we are unaware of any simple subdivision algorithms for
covering star-like holes by a C2 surface cap.

For polar configurations, Karčiauskas et al. [KMP06] de-
fined a C2 surface consisting of an infinite sequence of sur-
face rings of degree (5, 6) and Myles and Peters improved
on this with a bi-3 C2 subdivision construction with simple
rules [MP09]. The corresponding limit surface consists of
an infinite sequence of polynomial surface rings. TheC2 po-
lar splines constructed below provide a finite CAD-friendly
counterpart to this algorithm. Another finite construction,

Table 1
The shape basis.Our choice (4) of v and change of parameterization
from (b)→(c) produce the shape basis (c). When converted to polar
coordinates (d), each basis in function (c) belongs to exactly one
Fourier frequency (e).

k hwk (r, γ) reparam. polar coord. θ freq.

0 1 1 1 0

1 rfv1 (γ) x ρ cos(θ) 1

2 rfv2 (γ) y ρ sin(θ) 1

3 r2(f2
v1
(γ) + f2

v2
(γ)) x2 + y2 ρ2 0

4 r2(f2
v1
(γ)− f2

v2
(γ)) x2

− y2 ρ2 cos(2θ) 2

5 r2(2fv1 (γ)fv2 (γ)) 2xy ρ2 sin(2θ) 2

(a) (b) (c) (d) (e)

with n Bézier patches of degree (6,5) appeared in [KP09a].
This pairing of subdivision with a finite patch construction
is analogous to pairing bi-3 polar subdivision with a bi-
3 spline C1 construction in [MKP08]. (Section 9 describes
an alternative bi-3 spline derived from the new framework
that has fewer control points.)

3. Polar configurations and C
2 expansions

A k-layer polar configuration is a submesh consisting
of a triangle fan surrounded by k layers of quads that have
only 4-valent vertices (see Figure 6a). The central vertex
of the triangle fan is the polar vertex, and its valence is
denoted n. The corresponding point on the spline surface is
the pole. A designer can easily separate a polar vertex from
another polar vertex or a star-like configuration by adding
an edge loop encircling the polar vertex.
Two layers of control points in the vicinity of the po-

lar vertex will determine the second-order expansion of the
surface at the pole. The control points will be linearly com-
bined to create control points in the following shape basis
of polynomials of order 2:

s := [1, x, y, x2 + y2, x2 − y2, 2xy]. (1)

The shape basis is similar both to the power-form expan-
sion and to the expansion in polar coordinates (x, y) =
(ρ cos(θ), ρ sin(θ)). Table 1(c,d) shows how each basis func-
tion in s corresponds to exactly one θ frequency. Thus,
defining a quadratic surface as

p0 + p1x+ p2y + p3(x
2+y2) + p4(x

2−y2) + p5(2xy)
(2)

gives p0,p1,p2,p3,p4,p5 ∈ R
3 the intuitive geometric

meaning illustrated in Figure 3:
— p0 is a point on the surface;
— p1 and p2 help span the tangent plane;
— p3 determines the ellipticity; and
— p4 and p5 together define the orientation and magnitude
of the saddle components.
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(a) 1 (b) x (c) y (d) x2 + y2 (e) x2
− y2 (f) 2xy

Fig. 3. The shape basis represents geometric properties of the surface: (a) position, (b and c) tangent plane, (d) elliptic, and (e and f)
hyperbolic expansion terms. The control nets are defined by (16).

4. Observations that enable the construction

First, consider a quad mesh with polar configurations
converted to bi-3 splines except for surface ‘caps’ defined
by star-like and polar configurations. Figure 1 illustrates
how a corresponding polar cap is surrounded by a sin-
gle smooth curve while the star-like cap’s boundary is a
zigzag curve. Correspondingly, the polar cap can be a sin-
gle, parametrically C2, periodic spline patch whose outer
boundary matches the boundary of the polar configuration;
while star-like caps consist naturally of n patches with dis-
tinct parameterization that may be joined with geometric,
namely G2 continuity.

Fig. 4. C2 polar splines re-
quire degree (2, 6) to repre-
sent graphs of quadratics.

Secondly, we can ap-
proximate the disk
(ρ cos(θ), ρ sin(θ)), ρ ∈ [0..1],
θ ∈ [0..2π] by a C2 periodic
polynomial spline (u, v) →
(x, y) that is of degree 1 in
the radial direction emanat-
ing from the polar vertex and
of degree 3 in the periodic
direction approximating sine
and cosine variation. No less
than degree 3 will do if we
require parametric C2 con-
tinuity in the periodic direc-
tion. Consequently, the space
of quadratic functions z(x, y)
includes maps of degree (2, 6) in the spline parameters.
This is illustrated in Fig. 4 and was also shown in [MP09].
Finally, as displayed in Table 1(d), each function in the

basis s can be viewed as a radial function tensored with a
periodic function. Section 5 gives a specific choice of uni-
variate periodic degree 3 splines, fv1(γ) and fv2(γ), that ap-
proximate cos(2πγ/n) and sin(2πγ/n), respectively. Then
parameterizing (x, y) = (rfv1(γ), rfv2(γ)) yields the fac-
tored basis functions of degree (3, 6) of s in Table 1(b) that
are suitable for parameterizing the neighborhood of the
pole as shown in Figure 3. (The precise degree to which co-
sine and sine are approximated is irrelevant for curvature
continuity as the proof in Section 7 only relies on the repa-
rameterization above being valid – i.e. a diffeomorphism
away from the origin.)

0 0
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2

2
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4

n−1

4n−1
4n−2
4n−3

4n−4

a a q

q1◦

q2◦

q3◦

(a) a ∈ P3 (b) a ∈ P6 (c) i-links of q

Fig. 5. Notation. (a) A periodic control polygon with n coefficients
of a degree 3 spline with uniform knots. (b) A periodic control
polygon with 4n coefficients of a degree 6 spline with 4-fold knots.
(c) Periodic i-links of a polar configuration (in thick gray).

5. C
2 Polar Spline Basics

As illustrated in Fig. 6, we will fit one periodic spline to
each polar configuration in the quad mesh. Since we con-
struct the spline independently in each coordinate, we dis-
tinguish vectors in R

3 using boldface, e.g. qij ,bij ,pk ∈ R
3,

from scalars representing one coordinate, using teletype:
qij , bij , pk ∈ R. We want to tensor univariate radial and pe-
riodic functions in the bases of Table 1b. Therefore, in the
radial direction, the algorithm will generate the functions
{1, r, r2} using cubic splines and, in the periodic direction,
the splines

(fv0 , fv1 , fv2 , fv3 , fv4 , fv5) := (3)

(1, fv1 , fv2 , f2
v1
+f2

v2
, f2

v1
−f2

v2
, 2fv1fv2)

based on univariate periodic splines fv1 and fv2 of degree
3 that approximate cosine and sine. To define the periodic
functions, we use the following notation.

Univariate periodic splines: Let n be the valence of the
polar vertex. Let Pk be the space of control polygons of pe-
riodic C2 splines with uniformly-spaced knots of multiplic-
ity k − 2 (Figure 5a–b). We define a C2 periodic spline of
degree d, d > 2,

fa : [0, 1]→ R, a ∈ Pd := R
(d−2)n

by uniformly-spaced, (d−2)-fold knots at the integers mod-
ulo n scaled down by n, 1

nZn, and control points a with
periodic repetition. That is, for d = 3 the knot sequence is
just 1

nZn and for d = 6,

1

n
[0, 0, 0, 0, 1, 1, 1, 1, ..., n–1, n–1, n–1, n–1].
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Fig. 6. Construction of the C2 polar spline. (a) A 2-layer polar configuration is once-refined by bicubic polar subdivision [MKP08] to

yield (b) the 4-layer configuration q. From q, the construction derives (c) the control points b of the spline hb (pink) of degree (3, 6).

i-link: We define the i-link of a polar configuration q to be
a n-vector of vertices that are i radial edges away from the
polar vertex qi◦ := [qij ]j∈Zn

(Fig. 5c). The vector qi◦ can
be interpreted as an element of P3.

Splinemultiplication:The operator ⋄ : P3×P3 → P6 ex-
presses spline multiplication in terms of the control points:

fa1fa2 = fa1⋄a2 for a1, a2 ∈ P3.

In particular, if 1 ∈ P3 is the vector of all 1s, a ⋄ 1 ∈
P6, and fa⋄1 is the degree-raised representation of fa. The
Appendix gives explicit formulas and code to implement
the ⋄ operator. This and weighted vector addition are the
only operations needed for implementing C2 polar splines.

Periodic bases fvk : Cosine and sine can be approximated
by a pair of degree 3 splines fv1 and fv2 with coefficients
v1, v2 ∈ P3,

(v1)j := cos
2πj

n
and (v2)j := sin

2πj

n
.

The coefficients vk of the basis functions fvk (3) are then
computed from v1 and v2 as

v0 := 1 ⋄ 1 ∈ P6, v3 := v1 ⋄ v1 + v2 ⋄ v2,

v1 := v1 ⋄ 1, v4 := v1 ⋄ v1 − v2 ⋄ v2,

v2 := v2 ⋄ 1, v5 := 2v1 ⋄ v2. (4)

6. C
2 Polar Spline Construction

This section defines the polar spline hb(r, γ) algorithmi-
cally. We determine the control points bij ∈ R

3, separately
for each x, y or z-coordinate bij ∈ R as linear expressions
in pkvk, k = 0, . . . , 5. Here vk defines the periodic behavior
of the spline, while pk ∈ R represents the quadratic radial
expansion derived from the polar configuration.

Input: A 2-layer polar configuration
Fig. 6a shows a 2-layer polar configuration defining the

polar cap.

Output: One bivariate periodic spline hb ∈ s

Fig. 6c labels the coefficients

bij ∈ R for i ∈ {0, 1, . . . , 6} and j ∈ Z4n

of one coordinate of the C2 polar spline. The polar spline
is a single tensor-product spline patch hb(r, γ) of degree
(3, 6). Its knots are [0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7] in the radial
parameter r and are uniformly-spaced 4-fold knots in the
periodic parameter γ.

Algorithm
Step 0. We apply the masks of Appendix B to refine the
input 2-layers to a 4-layer polar configuration with 6n ver-
tices

(qij)i∈{0,1,...,5},j∈Zn
(per coordinate: qij)

that are indexed by i in the radial direction and by j in the
periodic direction as shown in Fig. 6b. The polar vertex
q0j := q00 is replicated n times.
Step 1. Compute vk ∈ P6 by (4).
Step 2. Let cγ := cos(2πγ) and sγ := sin(2πγ) and qij one
coordinate of the output from Step 0. Then compute

p0 :=
2

3
q00 +

1

3n

n−1
∑

j=0

q1j , p3 := −q00 +
1

n

n−1
∑

j=0

q1j ,

p1 :=
2

n

n−1
∑

j=0

cj/nq1j , p4 :=
2

n

n−1
∑

j=0

c2j/nq1j ∈ R (5)

p2 :=
2

n

n−1
∑

j=0

sj/nq1j , p5 :=
2

n

n−1
∑

j=0

s2j/nq1j .

Step 3. For each coordinate, form the spline’s coefficients

b0◦ :=p0v0 ∈ P6

b1◦ :=p0v0 +
1

3
(p1v1 + p2v2) (6)

b2◦ :=p0v0 + (p1v1 + p2v2) +
2

3
(p3v3 + p4v4 + p5v5)

bi◦ :=qi−1,◦ ⋄ 1 for i ∈ {3, 4, 5, 6}.
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Since v0 is a vector of all 1s, b0◦ is collapsed to the single
point p0 so that the pole is well-defined.

Comments Step 0 can be omitted if there is no other ex-
traordinary or polar vertex in the 4-link. Then the 4-link
can be used directly. The values computed in Step 1 can
be pre-computed for a range of n so that the step can be
omitted. The choice of pk in Step 2 is explained in Sec-
tion 8: p1, p2, p4, and p5 are computed using the discrete
Fourier transform in the periodic direction, while the for-
mulas for p0 and p3 emulate cubic B-spline knot-insertion
in the radial direction. Step 3 defines the innermost i-links
b0◦, b1◦, and b2◦ of the quadratic expansion (2) at the pole.
The outer i-links b3◦, b4◦, b5◦, b6◦, are degree-raised i-links
of the polar configuration.

7. Proof of curvature continuity

C2 continuity between the output spline hb and sur-
rounding bi-3 splines is straightforward since, by (6), the
control points b3◦, . . . , b6◦ define the same surface (in
degree-raised form) as q2◦, . . . , q5◦. Therefore hb is bi-3 C2

compatible as claimed.
To prove curvature continuity at the pole hb(0, 0), we

derive an explicit expansion at the pole.
Theorem 1. The polar spline hb is C2 at the pole.
Proof. We show that, at (0, 0), the spline hb(r, γ) differs
from a quadratic map h̃(r, γ) by o(r2) in the radial param-
eter r.
We define h̃(r, γ) as a spline of degree (3, 6):

h̃(r, γ) :=

5
∑

k=0

pkfvk(γ)guk(r), (7)

where pk is defined by (5), vk ∈ P6 by (4), fvk by (3),

u0 :=[1, 1, 1, 1, 1, 1, 1],

u1 := u2 :=[0,
1

3
, 1, 2, 3, 4, 5],

u3 := u4 := u5 :=
1

3
[0, 0, 2, 11, 26, 47, 74], (8)

and guk(r) is the univariate C
2 degree-3 spline with coeffi-

cient vector uk and knots [0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7]. By this
choice of uk,

gu0(r) =1,

gu1(r) = gu2(r) =r,

gu3(r) = gu4(r) = gu5(r) =r2, (9)

so that h̃(r, γ) represents the quadratic expansion (2)
as is evident after the change of variables (x, y) :=
(rfv1(γ), rfv2(γ)) suggested in Table 1(b,c):

h̃(r, γ)
(9)
= p0 + r

(

p1fv1(γ) + p2fv2(γ)
)

+r2
(

p3fv3(γ) + p4fv4(γ) + p5fv5(γ)
)

(4)
= p0 + r

(

p1fv1(γ) + p2fv2(γ)
)

+ r2
(

p3(fv1(γ)
2 + fv2(γ)

2)

+p4(fv1(γ)
2 − fv2(γ)

2) + p5(2fv1(γ)fv2(γ))
)

= p0 + p1x+ p2y + p3(x
2 + y2) + p4(x

2 − y2) + p5(2xy).

The first three formulas in (6) may be rewritten as fol-
lows.

[

b0◦
b1◦
b2◦

]

=

[

1 0 0
1 1

3
0

1 1 2

3

]

[ p0v0
p1v1+p2v2

p3v3+p4v4+p5v5

]

.

Since the columns of the matrix agree with uk, it is clear
that the pole-most three i-links of hb agree with those of h̃.
Consequently, hb(r, γ) = h̃(r, γ) + o(r2) and the quadratic
expansion of h̃(r, γ) matches that of h̃(r, γ) at (0, 0).
For generic input data, the polar spline cap with coordi-
nates hb therefore has a C2 embedding at the pole.

8. Mapping a polar configuration q to the

quadratic expansion coefficients pk

Theorem 1 does not depend on the choice of the six coef-
ficients pk that define the geometry of the quadratic expan-
sion at pole. Our choice (5) of the pk represents a natural
projection from the polar configuration.
Since each function in s corresponds to precisely one

Fourier frequency in the periodic direction (cf. Table 1d),
it is natural to match these frequencies, by having the for-
mulas for pk, k ∈ {1, 2, 4, 5} match the discrete Fourier
transforms of the 1-link q1◦.
Since the Fourier transform of the 1-link only prescribes

an average and does not include a contribution from the
polar vertex q00, the formulas for p0 and p3 are derived to
mimic knot-insertion into a uniform cubic B-spline in the
radial direction. To see this, we consider the limit as n→∞
and interpret the dense set of control points as a function of
γ (see Fig. 7). For simplicity, we consider an initial control
mesh q1◦ that is symmetric under rotation about the axis
through q00 and avgγ(q1γ), the average (centroid) of the
dense set of 1-link control points. Then p4 = p5 = 0 and

fb1◦(γ)
(6)
=p0 +

1

3
(p1cγ + p2sγ), (10)

fb2◦(γ)
(6)
=p0 + p1cγ + p2sγ+

2

3

(

p3+✚✚❃
0

p4c2γ+✚✚❃
0

p5s2γ

)

=p0 + p1cγ + p2sγ+
2

3
p3. (11)

We now focus on one radial slice with fixed angle γ. Due
to density, fq1◦(γ−

1

2
) is well-defined, we can consider con-

trol points [fq1◦(γ −
1

2
), fq0◦(γ), fq1◦(γ), fq2◦(γ), fq3◦(γ)] of

a radial cubic spline with knots [−3,−2,−1, 0, 1, 2, 3, 4, 5]
(Fig. 7a). We define p and hence b by 3-fold knot insertion
at 0:

5



fq1◦(γ−
1

2
)

fq0◦(γ)

fq1◦(γ)

fq2◦(γ)

fb0◦(γ)

fb1◦(γ)

fb2◦(γ)

fb3◦(γ)

(a) (b)

Fig. 7. Knot insertion analogy. The conversion of a symmetric
(infinite-valent) polar configuration q to spline control points b cor-

responds to knot insertion in the radial direction.

fb0◦(γ) =
1

6

(

fq1◦(γ−
1

2
) + 4fq0◦(γ) + fq1◦(γ)

)

,

fb1◦(γ) =
2

3
fq0◦(γ) +

1

3
fq1◦(γ), (12)

fb2◦(γ) =fq1◦(γ), fb3◦(γ) = fq2◦(γ), fb4◦(γ) = fq3◦(γ).
(13)

Then

p0
(10)
= avgγ(fb1◦(γ))

(12)
=

2

3
fq0◦(γ) +

1

3
avgγ(fq1◦(γ)) (14)

and

fb1◦(γ)
(12)
=
(13)

2

3
fq0◦(γ) +

1

3
fb2◦(γ)

(10)
⇒
(11)

p0 +
1

3
(p1cγ + p2sγ) =

2

3
fq0◦(γ)

+
1

3

(

p0 + p1cγ + p2sγ +
2

3
p3

)

⇒p3 = 3(p0 − fq0◦(γ))
(14)
= −fq0◦(γ) + avgγ(fq1◦(γ)).

This yields the choice of p0 and p3 in (5).

9. The relation of Polar Splines to Subdivision

A 2-layer polar configuration can be directly converted
into a C1 bi-3 spline cap such that p1 and p2 span the
tangent plane at the pole p0. We use this fact to illustrate
the relation of polar splines to subdivision. Improving on
[MKP08], this C1 construction does not require an initial
subdivision of the polar configuration: it yields equally good
shape with fewer control points since pk are derived using
the knot-insertion analogy in Section 8.
Lemma 1. The bi-3 spline with knots [0, 0, 0, 0, 1, 2, 3, 4, 5]
in the radial and 1

nZn in the periodic direction and control

points (bij)i∈{0,1,...,4},j∈Zn
(cf. Fig. 8),

b0◦ :=p01

b1◦ :=p01+
1

3
(p1v1 + p2v2) (15)

bi◦ :=qi−1,◦ for i ∈ {2, 3, 4},

forms a C1 surface with bounded curvature, unless the bij

are in special position.
Excluding control nets in ‘special position’ avoids dis-
cussing degenerate embeddings. The proof of tangent con-
tinuity and bounded curvature at the pole is identical to

q b

0j0j 10
10 2020 3030 40

11

11 21

21 31

31 41

12

12 22

1, n–1 2, n–1
degree
(3, 3)

periodic

(a) (b)

Fig. 8. A C1 polar spline. (a) A 2-layer polar configuration q can
be converted without an intermediate subdivision step to (b) a bi-3
spline h

b
defined by control points b (in the central pink region).

that in [MKP08] since the 1-link b1◦ lies in oval position,
i.e. satisfies for some point o and vectors e1, e2,

b1j = o+ e1cj/n + e2sj/n, cj/n := cos
2πj

n
.

Proof. We interpret b as a polar subdivision control mesh,
enumerated as a column vector, and devise a subdivision
matrix A which composes the effect of
(i) inserting knots along the radial direction at the

half integers, so that the radial knot sequence
[0, 0, 0, 0, 1, 2, 3, 4, 5] is transformed to
1
2 [0, 0, 0, 0, 1, 2, 3, 4, 5]; and

(ii) projecting the 1-link into oval position.
Once the 1-link is in oval position, step 2 above has no
impact since radial knot insertion preserves the oval po-
sition. Essentially, Ab ∈ S3 reparameterizes hb so that
hb

(

1
2r, γ

)

= hAb
(r, γ). Spectral analysis of this subdivision

algorithm then establishes bounded curvature at the pole
hb(0, γ).
A similar auxiliary C2 subdivision algorithm can be

defined to yield the C2 polar spline hb. Its matrix A
inserts knots in the radial direction and projects the re-
sulting 1- and 2-links to satisfy the relationships (6).
Spectral analysis of A yields the dominant six eigenvalues
(λ0, λ1, λ2, λ3, λ4, λ5) := (1, λ, λ, λ2, λ2, λ2) where λ := 1

2 .
The corresponding eigenvectors wk, k ∈ {0, . . . , 5}, are

(wk)ij := (uk)i(vk)j , i ∈ {0, . . . , 6}, j ∈ {0, . . . , 4n} (16)

(uk from (8) and vk from (4)). As shown in Table 1, the
corresponding splines satisfy the C2 conditions in Theorem
7.16 of [PR08]

{hw3 , hw4 , hw5} ∈ span{h2
w1
, h2

w2
, hw1hw2}. (17)

An alternative interpretation of our choice of wk is therefore
that we construct the spline so that its associated subdivi-
sion algorithm matches the C2 conditions.

Conversely, subdivision theory prescribes a minimal
generic degree of the C2 polar spline (see Section 3 and
Figure 4): since C2 continuity in the periodic direction
requires periodic degree at least 3, hw1 and hw2 must have
degree at least (1, 3) and, by (17), the degree is at least
(2, 6) for hw3 , hw4 , and hw5 . To model higher-order (mon-
key) saddles, radial degree 3 is needed. In that sense, our
degree (3,6) is optimal.
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(a) (b) (c) (d)

Fig. 9. Shape Trials. (a) Each embedded polar configuration defines (b) a C2 polar spline of degree (3, 6) (gray) surrounded by a bicubic
spline ring (gold); (c) shows the ensemble. (d) Highlight lines show smoothness of the transition from the bicubic neighborhood to the pole.

10. Results and Discussion

The test cases Fig. 9 and 10 illustrate the shape proper-
ties of C2 polar splines over the first few modes of oscilla-
tion. We would like the surface to have low fluctuations in
the distribution of Gaussian curvature and of the highlight
lines; and it should continue shape from the boundary data
without abrupt changes. The comparison in Fig. 10 shows
that a C2 polar spline cap behaves qualitatively no dif-
ferent from its subdivision counterparts [KMP06,MKP08]
even though it consists of just one spline patch.
To illustrate that C2 polar splines are bi-3 C2 compati-

ble, Fig. 11 shows the interplay between regions defined by
standard C2 bi-3 tensor-product splines (gold in (c)), po-
lar splines (grey in (c)), and regions covered with a hole
filling algorithm for extraordinary vertices (green in (c)).
The Tee in Fig. 11 and the Chair in Fig. 2 have Catmull-
Clark extraordinary vertices in the 3-link of a polar vertex
so that the output of a bi-3 compatible algorithm joins di-
rectly with the polar spline. While it is possible to adapt
C2 polar splines to allow for extraordinary vertices in the

2-link, it is preferable to have the designer introduce a
separating edge-loop to unambiguously define the C2 bi-
3 transition between polar splines and bi-3 C2 compatible
splines. This also avoids having to modify existing algo-
rithms [Pra97,KP09b,LS08] that expect a full quad neigh-
borhood around extraordinary vertices.
The coefficients pk correspond to intuitive geometric

properties of the surface illustrated in Fig. 3. They can be
adjusted by the user via the polar configuration control
points or even directly to meet design constraints – without
affecting the smoothness of the resulting spline surface.
To generalize the approach of this paper to CK surfaces

of degree (K+1,K(K+1)) at the pole, we need only choose
functions hwk that span the Kth order Taylor expansion.
The quality of the construction will then depend on the
choice of coefficients pk.
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(a) (5, 6) Jet subdivision
[KMP06]

(b) (3, 3) subdivision
[MKP08]

(c) our single (3, 6)
spline

Fig. 10. Curvature comparison of C2 Polar Jet Subdivision [KMP06], Bi-3 C2 Polar Subdivision [MKP08], and our method. The Gauss
curvature ranges from blue (negative) to green (near 0) to red (positive).

(a) (b) (c) (d)

Fig. 11. The “Tee” and finger tips. (a) A quad mesh with polar configurations defines (b) the spline surface consisting of (c) uniform
bicubics (gold), C2 polar splines (gray), and bi-3 compatible schemes like [Pra97,Pet02,LS08] (green) that fill holes caused by extraordinary
vertices. (d) The highlight lines flow smoothly across poles and the boundary of the polar spline.

Appendix A. Multiplying uniform cubic splines

The product of two uniform cubics is a sextic spline with
4-fold knots. To form the product, we convert the cubics

to Bézier form, multiply, and remove two knots at every
breakpoint of the resulting spline of degree 6.
(i) A uniform spline with control points [a0, a1, a2, a3]

has Bézier control points
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1

6
[a0+4a1+a2, 4a1+2a2, 2a1+4a2, a1+4a2+a3].

(ii) Multiplying a pair of cubic polynomials with Bézier

control points [b0, b1, b2, b3] and [b̂0, b̂1, b̂2, b̂3] yields

degree 6 control points c := [b0b̂0, 1

2
b0b̂1 +

1

2
b1b̂0, 1

5
b0b̂2 + 3

5
b1b̂1 + 1

5
b2b̂0, 1

20
b0b̂3 + 9

20
b1b̂2 +

9

20
b2b̂1 + 1

20
b3b̂0, 1

5
b1b̂3 + 3

5
b2b̂2 + 1

5
b3b̂1, 1

2
b2b̂3 +

1

2
b3b̂2, b3b̂3]

(iii) Two knots are removed from both ends of the degree-
6 Bézier form to obtain the C2 spline of degree 6
by the following sequence of operations (← indicates
assignment).
remove knots once
c0 ← 2c0 − c1, c6 ← 2c6 − c5
remove knots again
c1 ← 2c1 − c2, c5 ← 2c5 − c4
c0 ← 2c0 − c1, c6 ← 2c6 − c5

Combining these three steps, an explicit formula was de-
rived and is implemented by the following C++ procedure.

// Mu l t i p l y two uni form p e r i o d i c deg ree 3 s p l i n e s w i th
// n c o n t r o l p o i n t s each to y i e l d a s i n g l e deg ree 6 s p l i n e
// wi th 4n c o n t r o l p o i n t s and 4− f o l d knot m u l t i p l i c i t y .
template <typename T1 , typename T2>
void bsp mul33 ( int n , const T1 a [ ] , const T2 b [ ] , T1 c [ ] )
{

for ( int i = 0 ; i < n ; ++i ) {
int im1 = ( i−1+n)%n ;
int ip1 = ( i+1)%n ;
int ip2 = ( i+2)%n ;
const T1 &a0 = a [ im1 ] ; const T1 &a1 = a [ i ] ;
const T1 &a2 = a [ ip1 ] ; const T1 &a3 = a [ ip2 ] ;
const T2 &b0 = b [ im1 ] ; const T2 &b1 = b [ i ] ;
const T2 &b2 = b [ ip1 ] ; const T2 &b3 = b [ ip2 ] ;
c [4∗ i +0] = a0∗b1 /10.0 + a0∗b2 /30.0 + a1∗b0 /10.0

+ 8 .0/15 .0∗ a1∗b1 + a1∗b2 /10.0
+ a2∗b0 /30.0 + a2∗b1 /10 . 0 ;

c [4∗ i +1] = a0∗b1 /90.0 + a0∗b2 /45.0 + 16 .0/45 .0∗ a1∗b1
+ 7 .0/30 .0∗ a1∗b2 + 7 .0/30 .0∗ a2∗b1
+ a2∗b2 /9 .0 + a1∗b0 /90.0 + a2∗b0 /45 . 0 ;

c [4∗ i +2] = a0∗b3 /720.0 + a1∗b3 /180.0 + a2∗b3 /720.0
+ a0∗b1 /720.0 + a0∗b2 /180.0 + a1∗b0 /720.0
+ 19 .0/90 .0∗ a1∗b1 + 197 .0/720 .0∗ a1∗b2
+ a2∗b0 /180.0 + 197 .0/720 .0∗ a2∗b1
+ 19 .0/90 .0∗ a2∗b2 + a3∗b0 /720.0
+ a3∗b1 /180.0 + a3∗b2 /720 . 0 ;

c [4∗ i +3] = a1∗b1 /9 .0 + 7 .0/30 .0∗ a1∗b2 + a1∗b3 /45.0
+ 7 .0/30 .0∗ a2∗b1 + 16 .0/45 .0∗ a2∗b2
+ a2∗b3 /90.0 + a3∗b1 /45.0 + a3∗b2 /90 . 0 ;

}
}

Appendix B. Masks for Step 0

Step 0 of the a C2 polar spline construction (Figure 6)
refines the polar configuration according to [MKP08], i.e.
with the masks of Fig. B.1 and

Fig. B.1. Refinement rules for Step 0 (from [MKP08]).

α := β −
1

4
, β :=

5

8
, cγ := cos(2πγ),

γk :=
1

n

(

β −
1

2
+

5

8
ck/n + (ck/n)

2 +
1

2
(ck/n)

3

)

.
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