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Abstract
Conformal maps are widely used in geometry processing applications. They are smooth, preserve angles, and are
locally injective by construction. However, conformal maps do not allow for boundary positions to be prescribed.
A natural extension to the space of conformal maps is the richer space of quasiconformal maps of bounded confor-
mal distortion. Extremal quasiconformal maps, that is, maps minimizing the maximal conformal distortion, have
a number of appealing properties making them a suitable candidate for geometry processing tasks. Similarly to
conformal maps, they are guaranteed to be locally bijective; unlike conformal maps however, extremal quasicon-
formal maps have sufficient flexibility to allow for solution of boundary value problems. Moreover, in practically
relevant cases, these solutions are guaranteed to exist, are unique and have an explicit characterization.
We present an algorithm for computing piecewise linear approximations of extremal quasiconformal maps for
genus-zero surfaces with boundaries, based on Teichmüller’s characterization of the dilatation of extremal maps
using holomorphic quadratic differentials. We demonstrate that the algorithm closely approximates the maps when
an explicit solution is available and exhibits good convergence properties for a variety of boundary conditions.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

Keywords: parametrization, quadrangulation, remeshing, conformal parametrization.

1. Introduction
Surface-to-plane and surface-to-surface maps arising in
many geometry processing contexts (for example, texture
mapping, remeshing and quadrangulation and surface regis-
tration) are expected to have a number of natural properties,
such as geometric invariance, smoothness, local injectivity
and mesh independence. These maps often have to satisfy a
variety of boundary constraints, most commonly, positional
constraints at interior and border points.

Consider a basic common problem of mapping a simply
connected planar domain D to another planar domain D′,
with fixed values on the boundary f0 : ∂D→ ∂D′. In the case
D′ is convex, minimizing the Dirichlet energy yields a good
solution: a harmonic map is unique, smooth and globally bi-
jective. On the other hand, if D′ is not convex, harmonic
maps are no longer bijective and have fold singularities.

Remarkably, a different choice of energy functional yields
maps that retain many aspects of harmonic maps for con-
vex target domains, but does not require a convexity restric-
tion. Extremal quasiconformal maps are maps minimizing
the maximal deviation from conformality (dilatation, de-
fined in Section 3). For fixed boundary data, the extremal

map is unique, bijective (if the boundary allows this) and
almost everywhere smooth (these maps may be only contin-
uous at some isolated points).

While the functional is nonlinear and does not depend
smoothly on the map, the solutions of the optimization prob-
lem, under weak assumptions, can be characterized by a sin-
gle holomorphic function (a quadratic differential).

In this paper we present a numerical algorithm allowing to
compute piecewise-linear approximations to extremal quasi-
conformal maps, using their characteristic properties. While
the algorithm is nonlinear, we demonstrate that it converges
reliably for a broad range of simply and multiply connected
domain shapes and boundary data, can be naturally com-
bined with other distortion optimization and is easy to im-
plement.

2. Related work
The literature on surface parametrization is vast, and we
refer to comprehensive surveys [FH05], [AS06] of earlier
work in the area.

Comparison of functionals. We start with an overview of
functionals commonly used for parametrization. The prob-
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functional/PDE LIN BC FLD UNI BIJ
harmonic
[Tut63, Flo97]
[DMA02,
LPRM02]

+ + finite + convex

conformal
[GY03, KSS06,
BGB08,SSP08]

- - N/A + any

least-stretch
[SSGH01] - + ∞ - any
MIPS
[HG99] - + ∞ - any
elasticity
[Bal81, CLR04] - + ∞ - any

extremal q.c. - + finite + any

Table 1: Properties of smooth parametrization functionals.

lem of defining a mapping from a surface to the plane or
between surfaces has two principal aspects: a smooth defi-
nition (typically an energy measuring distortion) and corre-
sponding discrete energy. The choice of underlying smooth
energy is essential, as the flaws in this choice cannot be fully
resolved by a good choice of discretization; in the limit of
fine meshes the behaviors are likely to be similar.

Many energies and PDEs were proposed for parametriza-
tion and related problems. The most important ones are sum-
marized in Table 1. We focus on several important proper-
ties, linearity of defining equations (LIN), whether mappings
in this class can satisfy arbitrary boundary conditions (BC),
whether the solution is unique (UNI) and for which domains
it is bijective (BIJ).

An additional property, particularly important for nonlin-
ear functionals, is their behavior for maps with folds (column
FLD). We observe that all functionals ensuring bijectivity
on arbitrary domains typically achieve this by fast growth to
infinity as the mapping develops folds. As a consequence,
the functionals are nonlinear, and require a starting point
for optimization. This combination of properties results in
a fundamental problem: a bijective map is needed to initial-
ize the optimization, as the functional is infinite for any non-
bijective initial map.

These observations highlight the unique properties of ex-
tremal quasiconformal maps: the functional remains finite on
folds, and, under relatively weak assumptions on boundary
data, has a unique minimizer.

MIPS parametrization introduced in [HG99] is of partic-
ular interest, as it is an integral of a symmetric form of a
dilatation measure and is closely related to extremal quasi-
conformal maps, as discussed in Section 3.

Constrained parametrization. Methods for constrained
parametrization were proposed in [Lév01, ESG01, KSG03,
KGG05]. The method of [Lév01] optimizes Dirichlet en-
ergy and imposes pointwise position and gradient constraints
with penalty terms, without attempting to guarantee bijec-
tivity. Other techniques [ESG01, KSG03, KGG05] take an
approach that can be characterized as achieving bijectivity
first, possibly with mesh refinement, and without attempt-

ing to approximate a smooth functional, and then smooth-
ing the resulting parametrization while enforcing the bijec-
tivity constraint. The problem of this class of approaches is
that the optimal constrained solution is likely to be on the
boundary of the feasible domain, which negatively affects
the parametrization quality.

Quasiconformal maps. The work most closely related to
ours is the work on quasiconformal maps and Beltrami
flows. In [ZRS05], quasi-harmonic maps are considered
(harmonic maps in a user-specified metric). One can view
these as approximations to quasi-conformal maps.

Quasiconformal maps, typically on disk domains, were
computed by solving the Beltrami equation with prescribed
Beltrami coefficient, e.g. in [Dar93]. [ZLYG09] proposes
a method for computing quasiconformal maps from Bel-
trami coefficients on general multiply connected domains.
In [LWT∗10], holomorphic Beltrami flow is introduced for
shape registration. Beltrami coefficient is used as a shape
representation and two shapes are matched by evolving the
Beltrami coefficient so that the landmarks are matched and
the L2 norm of the Beltrami coefficient, is minimized.

[LKF12] demonstrates that in the special case of four
point constraints and periodicity conditions, an extremal
quasiconformal map from the complex plane to itself has
closed form.

In mathematics, the theory of Teichmüller maps and
spaces has a long history, starting with the work of Grötzsch
[Grö30], with key ideas introduced by Teichmüller [Tei40,
Tei43] and it remains an active area of research. Many fun-
damental questions were settled by Ahlfors [Ahl53]. A num-
ber of books, e.g., [Ahl66, GL00] provide a comprehensive
introduction to the subject.

Teichmüller spaces, i.e. spaces of conformal equivalence
classes of surfaces, were introduced to graphics and vi-
sion literature in [SM04, JZLG09], and further developed
in [JZDG09,WDC∗09]. The extremal dilatation of quasicon-
formal maps define a metric on these spaces, but this metric
was not used in this work.

The interest in quasiconformal maps is to great extent
motivated by the attractive properties of conformal maps,
for which a number of high-quality computational algo-
rithms were proposed [GY03,BGB08,KSS06,SSP08]. ABF
[SdS01] can also be viewed as a conformal map approx-
imation. Last three methods (when the optimization con-
verge to a valid solution) guarantee bijectivity of discrete
maps, these algorithms allow for free boundaries, or cur-
vature constraints on the boundary, but not positional con-
straints. ARAP [LZX∗08] minimizes deviation from isome-
try.

Global parametrization methods deal with surfaces of
higher genus, and correspond to flat metrics with cones, e.g.,
recent feature aligned methods [RLL∗06, KNP07, BZK09].
In the context of bijective maps, [BZK09] is of particular
interest, proposing iterative stiffening as a way to eliminate
foldovers inherent to harmonic-like parametrizations with
constraints.

c© 2012 The Author(s)
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3. Background
In our exposition we primarily focus on maps from plane
to plane. Due to conformal invariance, all concepts can be
easily generalized to surfaces of genus zero by mapping the
surface conformally to the plane. However, as we briefly ex-
plain in Section 6 all concepts and the algorithm can be ex-
tended to surfaces of arbitrary genus.

We will use complex coordinates in the plane, z = x+ iy.
For an arbitrary (not necessarily holomorphic) differentiable
function f (z), the complex derivatives are fz = 1

2 ( fx− i fy)
and fz̄ = 1

2 ( fx + i fy). We assume that for all maps these
derivatives are defined almost everywhere, and are square-
integrable. For each complex number z we define a ma-

trix A(z) =

(
Re(z) −Im(z)
Im(z) Re(z)

)
and a vector v(w) =

(Re(w), Im(w))>, so that zw corresponds to A(z)v(w).

Dilatation and quasiconformal maps. The little dilatation
of a differentiable map f at z is defined as

k(z) =
∣∣∣∣ fz̄

fz

∣∣∣∣ (1)

It is related to the ratio K of singular values of the Jacobian
of f (large dilatation) by K = 1+k

1−k . A map f : D→ D′ is
quasiconformal if k(z)≤ k for some k almost everywhere in
D. In this case, k( f ) = supk(z) is the maximal dilatation of
the map. The dilatation k has the following important prop-
erties:
• 0≤ k < 1 for orientation-preserving maps, and 1≤ k≤∞

for orientation reversing maps.
• for a conformal map k = 0 and a conformal map com-

posed with reflection k =∞.
An advantage of considering k instead of K is that k varies
continuously as the sign of the determinant of the Jacobian
of f changes on folds, while K has a singularity (cf. compar-
ison of functionals in Section (2)).

For a quasiconformal map with fz 6= 0 almost everywhere,
µ = fz̄/ fz is called the complex Beltrami coefficient, (Fig-
ure 1) and the equation

fz̄ = µ fz (2)

is the Beltrami equation.

θ

1–k
1+k

θ = 
1
2
arg μ

Figure 1: Geometric meaning of the complex Beltrami coef-
ficient µ = ke2iθ.

If g and h are conformal, then h◦ f ◦ g is quasiconformal
with the same dilatation k as f . The simplest map with di-
latation k is an affine stretch Ak along the two coordinate

axes by 1+ k and 1− k respectively; this yields a family of
quasiconformal maps with constant dilatation k(z) = k, of
the form

f = h◦Ak ◦g. (3)

This simple example of quasiconformal maps plays an im-
portant role in the theory of extremal quasiconformal maps.

Extremal quasiconformal maps. Suppose a quasiconfor-
mal map h : D→ D′ maps a (possibly multiply connected)
domain D to D′. Let B be a subset of the boundary of D, and
consider the set QB of all quasiconformal maps f that agree
with h on B and are homotopic to h (Figure 2). In the set QB
there is a map f ext , with k( f ext) ≤ k( f ) for any f . The map
f ext is called the extremal quasiconformal map.

A

B

A

B

Figure 2: Examples of nonhomotopic maps with the same
boundary data on ring domain; the left plot represents iden-
tity; note that the path AB connecting two boundary points
on the right, cannot be continuously deformed to the spiral
path AB on the left, while keeping the boundary fixed. An
extremal quasiconformal map is unique for each homotopy
class under assumptions of Proposition 2.

0

π

2π

2ππ

zero derivative

Figure 3: Left: A non-Teichmüller extremal map of the disk
to itself. The image of the polar coordinate grid is shown.
Right: the boundary values of the map on the circle in angu-
lar coordinates.

For a broad range of practically relevant boundary con-
ditions, extremal quasiconformal maps have a very specific
local structure that can be described in terms of a pair of con-
formal maps, and a global structure that can be characterized
by a quadratic differential.

c© 2012 The Author(s)
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Teichmüller maps. Locally in a neighborhood of every
point (excluding zeros of gz), a Teichmüller map has the form
(3): h◦Ak ◦g, for a choice of conformal maps h(w) and g(z),
where w denotes the complex coordinate on the intermediate
domain Ak acts on.

A simple calculation leads to the following lemma:

Lemma 1 For a map f = h◦Ak ◦ g, where h and g are con-
formal, and Ak is a stretch with dilatation k, the Beltrami
coefficient has the form

fz̄
fz

= k
φ̄

|φ| (4)

where φ = (gz)
2.

Proof By Cauchy-Riemann equations, hw̄ = 0, and gz̄ = 0;
similarly, for the anti-conformal map ḡ, ḡz = 0. Observe that
the affine map Ak(w) in complex form can be written as
Ak(w) = w+ kw̄. For this reason, fz = hw(gz + kḡz) = hwgz,
and fz̄ = hw(gz̄+kḡz̄) = khwḡz̄ (because g is conformal, gz̄ =

0 and ḡz = 0). We observe that fz̄/ fz = kḡz̄/gz = kgz
2/|g2

z |,
as ḡz̄ = gz.

source target

g

Ak
stretch h

Figure 4: Locally, a Teichmüller map can be decomposed
into two conformal maps and an affine transform.

The quantity φ = g2
z is called the quadratic differential

of f . Geometrically, the quadratic differential can be inter-
preted, up to a scale, as the traceless part of the metric tensor
M = J[ f ]>J[ f ] of the map f , where J[ f ] is the Jacobian ma-
trix. More specifically, the singular vectors of A(φ(z)) deter-
mine the stretch directions of f at z.

More generally, a quadratic differential on a domain with
a complex coordinate z is defined by a holomorphic function
φ(z), which depends on the choice of the coordinate system.
If w is a different choice of complex coordinates on the do-
main, then φ

w(w)w2
z = φ(z). This change-of-coordinates rule

also allows to define a quadratic differential on a Riemann
surface by a set of holomorphic functions on local charts.

Definition 1 On a planar domain D, a map f is called a Te-
ichmüller map, if it is quasiconformal with Beltrami coeffi-
cient of the form

µ(z) = k
φ(z)
|φ(z)|

where φ is a holomorphic function and k is a constant dilata-
tion, everywhere where φ 6= 0.

Observe that the definition is invariant with respect to com-
position with conformal maps on either side. While post-
composition does not change the Beltrami coefficient, pre-
composition results in a change in φ but not in k.

Unlike the definition of extremal quasiconformal maps,
involving minimization of a nonsmooth and nonlinear func-
tional, Teichmüller maps are much more amenable to com-
putation, thanks to explicit form of the Beltrami coefficient.
Fortunately, in most cases, an extremal map is a Teichmüller
map and it is unique. In particular, the following proposi-
tion can be obtained from a sufficient condition for Teich-
müller map existence for disks [Rei02] and conformal map-
ping properties:
Proposition 2 For two simply connected bounded domains
D and D′ with piecewise smooth boundaries forming nonde-
generate corners; suppose h : ∂D→ ∂D′ is a function with
continuous nonvanishing bounded derivative and almost ev-
erywhere defined second derivative. Then in every homo-
topy class of maps f satisfying f |∂D = h, there is a unique
extremal Teichmüller map f with bounded L1-norm of the
quadratic differential φ.

As illustrated in Figure 3, the conditions on h in propo-
sition 2 are essential. The quasiconformal map of the disk
to itself shown in this image is known to be extremal for its
boundary values [Rei02]. The map in the image is obtained
as f2 ◦ g ◦ f1, where f1(z) = i(1+ z)/(1− z) maps the disk
to the upper half-plane, f2 is its inverse, and g(z) = |z|z, and
can be easily shown not to be a Teichmüller map.

A similar statement appears to hold for multiply con-
nected domains [Gar], but we were unable to locate a pub-
lished proof. These theorems extend immediately to surfaces
of genus zero with boundary, and also hold for maps between
surfaces of arbitrary finite genus. In this paper, we focus on
genus zero.

Proposition 2 is the foundation of our approach for the
computation of extremal maps. For these types of boundary
data, it is sufficient to find a map with holomorphic quadratic
differential and constant dilatation.

Quadratic differential structure. Before discussing the al-
gorithm we briefly mention the local structure of quadratic
differentials near its zeros and poles. The quadratic differen-
tials of Teichmüller maps have only simple poles, and gener-
ically zeros of order 1. The trajectories of quadratic differ-
entials are integral lines of the fields of singular directions
of A(φ(z)). These directions change rapidly near zeros and
poles, as can be seen in Figure 5. While poles of quadratic
differentials always remain on the boundaries, zeros sponta-
neously appear in the interior or on the boundary (Figure 9).

4. Algorithm
Overview. Given a boundary function fb and an initial (not
necessarily bijective) map satisfying boundary conditions,
we compute a piecewise-linear approximation to a Teich-
müller map minimizing a discretization of the least-squares
Beltrami (LSB) energy:

ELSB =
∫

D

∣∣∣∣ fz̄− k
φ̄

|φ| fz
∣∣∣∣2 dA (5)

c© 2012 The Author(s)
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pole zero

Figure 5: Behavior of a Teichmüller map near poles and
zeros of a quadratic differential.

with f , φ and k are unknowns, and the constraints φz̄ = 0 (i.e.
φ is holomorphic) and f |∂D = fb are applied.

By Teichmüller uniqueness and existence, this energy has
a single global minimum with value zero, in the homotopy
class of its initial point. We note that the energy is not con-
vex. However, we have observed (see Section 5) that it con-
sistently converges starting from a variety of arbitrary initial
starting points.

There are two essential conditions defining the Teich-
müller map that need to be converted to a discrete form: (1)
the quadratic differential defining the map has to be holo-
morphic (2) the dilatation k has to be constant. Note how-
ever that a discrete piecewise-linear map cannot, in general,
achieve a perfectly constant k, and as a consequence, zero
LSB energy. This is also the case for discrete conformal
maps, for which k should be constant zero, but deviates from
zero significantly (this is demonstrated in Figure 6).

0

0.1

0 0.5
0

20

40

Figure 6: The distribution of dilatation values for a con-
formal map computed using the method of [SSP08]. Note
that although the method produces a high-quality conformal
map, the dilatations on triangles may be far from zero.

4.1. Discretization
We represent f as a piecewise-linear map defined by values
at vertices of the original mesh. The complex derivatives fz̄
and fz are naturally defined per triangle. If ei,e j,ek, are edge
vectors of a triangle T with opposite vertices (i, j,k), the gra-
dient of piecewise-linear f is given by fiti+ f jt j+ fktk

2AT
, where

AT is the triangle area, ti = e⊥i , and fi are values at the ver-
tices. It immediately follows that per-triangle derivatives are

given by

fz =
1

4AT

(
fit̄i + f j t̄ j + fk t̄k

)
,

fz̄ =
1

4AT

(
fiti + f jt j + fktk

)
(6)

where ti = tx
i + ity

i is the complex form of the vectors ti =

(tx
i , t

y
i ).

Discretization of quadratic differentials. The holomor-
phic condition on the quadratic differential φ, φz̄ = 0 can
be discretized in a similar manner if the quadratic differ-
ential values are defined per vertex. However, this defini-
tion does not naturally reflect the relation between f and φ.
Equation (2) suggests that the Beltrami coefficient µ, and,
as a consequence, the quadratic differential φ, is most nat-
urally defined in a way consistent with fz̄ and fz, i.e., per
triangle. If we use notation φ̄ = vx + ivy for the components
of the conjugate of the quadratic differential, then the holo-
morphic condition φz̄ = 0 can be written more explicitly as
∂xvx+∂yvy = 0 and ∂yvx−∂yvy = 0, with two equations cor-
responding to equating real and imaginary parts of φz̄ to zero.

If we regard the pair (vx,vy) as components of a 1-form
h = vxdx+ vydy, then dh = (∂yvx−∂xvy)dx∧dy. Similarly,
as the Hodge star acts on 2D 1-form components as a 90-
degree rotation, we get for the co-boundary operator δh =
∗d ∗h = ∂xvx +∂yvy. Thus, we conclude that the 1-form h =
Re(φ)dx− Im(φ)dy is harmonic:

dh = 0, δh = 0. (7)

If we regard v = (vx,vy) as a vector field, this pair of equa-
tions correspond to zero curl and divergence of v. This obser-
vation suggests a standard per-edge discretization, with real
scalars associated with edges, and standard discretizations
of d and δ operators. Let hi j be the value of the harmonic
1-form on the edge ei j. For convenience, we use notation
h ji =−hi j.

For a triangle T = (i, j,k), let ri j = e⊥j − e⊥i , and define
r jk and rki by cyclic permutation. We represent the vectors
r = (rx,ry) in complex form r = rx + iry.

Then the per-triangle quadratic differential values are de-
fined by

φT =
1

6AT

(
hi jri j +h jkr jk +hkirki

)
. (8)

Discrete energy and constraints. To summarize, the en-
ergy (5) is discretized using per-vertex complex variables fi
to represent the map, a single scalar k for the constant di-
latation and a real harmonic vector 1-form represented by
per-edge values hi j. The energy is given by

Ed
LSB = ∑

Tm

∣∣∣∣ f m
z̄ − k

φ̄m

|φm|
f m
z

∣∣∣∣2 Am (9)

c© 2012 The Author(s)
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with φ defined by (8), and fz and fz̄ defined by (6). Addi-
tional constraints ensure that h is harmonic:

hi j +h jk +hki = 0, for triangle T = (i, j,k)

∑
j

wi jhi j = 0, for a vertex j, (10)

where wi j are the standard cotangent weights, with the two
conditions corresponding to vanishing boundary and co-
boundary operators d and δ.

We introduce an auxiliary variable sm = 1/|φm|. With this
variable, the energy takes the form

Ed
LSB = ∑

Tm

∣∣ f m
z̄ − kφ̄msm f m

z
∣∣2 Am (11)

with an additional nonlinear constraint sm = 1/|φm|. While
we focus on Dirichlet boundary conditions defined on the
whole boundary, we note that free boundaries can be easily
added.

4.2. Optimization
The energy (9) is highly nonlinear. Standard methods for op-
timizing this energy that we have tried (quasi-Newton meth-
ods) do not behave well (see Section 5). At the same time,
the energy is quadratic with respect to each of the vector
variables f = [ f1, . . . fP] and h = [h1, . . .hL] where P and L
are the number of vertices and edges respectively. It is also
quadratic with respect to the global variable k. The nonlin-
earity in the solution reduces to enforcing the constraint be-
tween sm and φm.

This observation suggests an alternating-descent algo-
rithm, with h, f and k minimized in alternating fashion.
While this does not guarantee convergence to a global mini-
mum, this yields a stable algorithm with consistent practical
behavior (See Section 5). If f, h are fixed, k can be easily
computed explicitly. Furthermore, for fixed f, we use the fol-
lowing property of the energy:
Proposition 3 For fixed f, optimal discrete holomorphic φ

(up to a scale factor) does not depend on k, and optimal k is
given by

computation.
The algorithm in its basic form (Algorithm 1) alternates

two steps. We use a harmonic f to initialize the iterative so-
lution, corresponding to minimizing LSB energy with con-
stant k = 0. In the main loop, a quadratic problem is solved
to determine an optimal value hnew, keeping f and s fixed, in
general violating the nonlinear constraint sm = 1/|φm|. The
constraint is enforced by projection, and a line search is per-
formed in the direction determined by hnew, to ensure that
the energy decreases.

The stability of this algorithm is guaranteed as the en-
ergy is forced to decrease at each step; boundary conditions
are also satisfied by construction. Its main limitation is that

Algorithm 1
Initialize f to harmonic, sm to 1.
Initialize h := argminhEd

LSB(h, f,s,1)
Initialize k using Equation 12
while energy change > ε f do

while energy change > εφ do
{Optimize h for fixed f, k and s.}
hnew := argminhEd

LSB(h, f,s,k)
{Perform 1-dimensional search on the line between
h and hnew}
topt = argmintE

d
LSB((1− t)h+ thnew, f,s(t),k)

h := (1− topt)h+ topthnew

Compute k using Equation 12.
end while
{Optimize f for fixed h, k and s}
f := argminfE

d
LSB(h, f,s,k)

end while

there is no guarantee that the global minimum is reached
or approximated well. In practice, we observe that the algo-
rithm converges to the same solution, even for large varia-
tions in the starting point; furthermore, in all our test cases
for which the global minimum is known, the algorithm con-
verges to this global minimum, as discussed in more detail
in Section 5.

Extension to surfaces. The algorithm directly extends to
mapping genus-zero surfaces with boundary to the plane.
Because quasiconformal distortion is conformally invariant,
it is sufficient to use an arbitrary conformal map of the
surface to the plane, and the composition of this confor-
mal map with the computed extremal quasiconformal map
is extremal. We use the scale-factor based conformal map
computation to map surfaces to the plane [BGB08, SSP08].
Specifically, for a multiply connected domain of genus zero
we follow these steps:

• One boundary is chosen as external; the remaining bound-
ary loops are triangulated, reducing the surface to simply
connected.

• The algorithm of [SSP08] is used to compute a loga-
rithmic scale factor ui for each vertex ui, such that edge
lengths li j = e(ui+u j)/2 define a planar mesh. For the solu-
tion to be unique, we choose the scale factors to be zero
on the outer boundary (i.e., no scale distortion along the
boundary).

• The added triangles are removed to obtain the discrete
conformal image of the original mesh.

We note that the metric used for the conformal map
need not coincide with the Euclidean embedding metric.
This can be used for minimizing different types of errors
in the parametrization (cf. [KMZ10]), as well as “correc-
tion” of a non-bijective parametrization (i.e. nearly flat met-
ric). If the metric is derived from a different locally bijective
parametrization, there is no need for the flattening conformal
map; however if the parametrization is not locally bijective,
the conformal map is still needed. Figure 18 shows some
examples of this.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.
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Discussion. By construction, the quadratic differential com-
puted by the algorithm is discrete holomorphic and the cor-
responding Beltrami coefficient has constant dilatation k. At
the same time, the actual Beltrami coefficient of the map
fz̄/ fz is just an approximation to the “perfect” computed co-
efficient. We note that in general, if µ̂ (i.e. the angular part
of µ) is fixed, this determines the parametrization uniquely
with no control for k on each triangle.

While we observe good convergence of the algorithm to
constant k in L2 norm when the mesh is refined, this does not
guarantee that k < 1 (i.e. there are no fold-overs) on all trian-
gles, even for a very fine mesh. In practice, we observe that
no triangles are flipped for a sufficiently fine mesh, exclud-
ing few triangles near highly concave parts of the boundary.

In the next section, we present a detailed evaluation of the
behavior of the algorithm: dependency on the starting point,
convergence rates, comparison to analytic cases.

5. Evaluation
Validation. We validate our method in several ways. The
most direct validation is comparison to analytically com-
puted maps. Unfortunately, the analytic solution is known
explicitly only in few cases. We consider two maps known
analytically: mapping a disk to itself with four boundary
points moved to different locations, and mapping of a ring
to a ring with a different ratio of inner to outer radius. In the
first case, we consider maps moving points at angular loca-
tions ±π/4,π± π/4 on a circle, to ±φ,π± φ. This map is
given by

fφ(z) = e−iφF
(

zeiφ,e−2iφ
)

where F(z,w) is the incomplete elliptic integral of the first
kind. For the ring domain with inner and outer radii r0 and
r1, mapped to a ring with inner and outer radii r′0 and r′1, the
extremal map has the polar coordinate form

(r,φ)→ (r′0(r/r0)
K ,φ)

where K = ln(r′1/r′0)/ ln(r1/r0). In both cases, we observe
an accurate match both for the maps, and extremal dilatation
values.

We can also compute a subclass of Teichmüller maps
semi-analytically, by prescribing a pair of conformal maps,
and a stretch in the intermediate domain. We tested our
method for both analytically and semi-analytically com-
puted maps (Figure 7).

In analytic cases, the maps are very close to exact ones.
As the piecewise linear maps cannot in general have con-
stant dilatation, we consider the deviation from the correct
constant k as a measure of error, shown in the figure.

Convergence in the general case. While the optimal dilata-
tion cannot be computed for general boundary conditions,
one can estimate the rate at which the deviation of dilatation
k from the average value decreases. We observe a similar
behavior for this measure shown in the last two examples
in Figure 7. The number of iterations needed to reach 1%
relative change in energy was typically on the order of 10
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Figure 7: Top 3 examples: comparison to extremal quasi-
conformal maps. A disk with four points moved along the
boundary, a ring with a change in the ratio of inner-to-outer
radius, and an example of a map computed as a composi-
tion (3). This example shows a comparison of the map di-
rectly computed as the composition (left) with the map com-
puted using our algorithm (middle). For each example, a his-
togram of k is shown, with percentages of triangles along the
vertical axis. The last two examples use prescribed boundary
values not corresponding to a known map.

(in some cases, such as the ring domain, as low as 2-3). On
the other hand, more complex and extreme deformations re-
quired more iterations.

As expected, we observe that zeros of the quadratic differ-
ential become visible in the map (e.g., as shown in Figure 9).

Dependence on initialization. As our algorithm minimizes
a nonlinear energy, in principle the result may depend on the
starting point. However, we observe very little dependence,
as demonstrated in Figure 10.

c© 2012 The Author(s)
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Figure 8: Convergence of k as a function of mesh resolution
for examples of Figure 7; for the ring and four-point disk ex-
amples, new meshes were generated for each resolution; for
remaining examples, the meshes were refined by quadrisec-
tion.

0.6

0.1

Figure 9: After 3 iterations of the algorithm, applied to the
initial harmonic map, zeros of the quadratic differential be-
come visible; in the final map they appear as isolated spots
of nearly zero k.

Alternative methods for computing the map. As the ex-
tremal quasiconformal maps are defined as minima of the
functional maxz k(z), an obvious alternative is to attempt to
compute the map directly, without relying on its description
as the Teichmüller map. The discrete problem can be for-
mulated as a the problem of minimizing k with per-triangle
nonlinear inequality constraints km(f) < k. Our experiments
show that with most starting points standard interior-point
or active-set methods do not make much progress on the
problem even in relatively simple cases (Figure 11, matlab
optimization with analytic gradients is used). A common ap-
proach to approximation solutions of L∞ optimization prob-
lems is to use Lp norms with increasing p. For low p, and
high p we have observed bad convergence behavior not pro-
ducing meaningful maps. Medium-range values of p (p = 5)
converged (although more than an order of magnitude slower
than our method) but the solution was quite far from the ex-
tremal map.

Comparison with other energies. Figure 15 shows how
our maps compare to several common types of maps ob-
tained by minimizing other types of energies, that can satisfy
Dirichlet boundary conditions: harmonic/LSCM ( [DMA02,
LPRM02]), ARAP ( [LZX∗08]), and MIPS [HG99]. The

harmonic map ARAP noisy initialization

extremal q.c. map results from above initializations

Figure 10: Dependence on initialization. A screw is mapped
to an annulus using three different initializations. Helical
sharp edges are highlighted to show parametrization flow.
Upper row: Harmonic, ARAP and noisy parametrizations
exhibit 924, 268 and 831 fold-overs respectively (shown in
red). Lower two rows: Extremal q.c. maps resolve all fold-
overs. The algorithm produces consistent results for each
initialization in the first row.

Beltrami 2-norm 5-norm ∞-norm

0.6

0.2

0.4

Figure 11: Comparison of our method with direct optimiza-
tion of maximal k, and optimization of

∫
(k)pdA for 3 values

of p. The color indicates the value of k.

first two methods could handle the same boundary con-
straints, but produced parametrizations far from bijective.
MIPS had to be initialized with simpler boundary con-
straints, for which an initial bijective parametrization can
be obtained. Figures 12 and 13 demonstrate challenging
parametrizations with sharp feature alignments. Figure 14
compares our method to ARAP when applied to deform an
image.

We observe that for our method the final result for higher
resolution meshes is largely independent of mesh connectiv-
ity(Figure 16). For simple boundary shapes, the map is typ-
ically well-approximated with relatively few triangles (Fig-
ure 17).

Combining with other error metrics. While maximal di-
latation are a natural measure of distortion, it does not cap-

c© 2012 The Author(s)
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0.7

0.4

0.1

harmonic ARAP q.c.

Figure 12: Parametrization with aligned sharp features and
boundary. We cut the front of the fandisk model to obtain a
disk-like surface and flatten it while aligning the sharp fea-
tures and boundary to parametric lines using harmonic map,
ARAP and our extremal q.c. map. The color visualization
and histograms shows values of k between 0.1 to 0.7.

Figure 13: Parametrization aligned to the boundaries of a
large curved multiply connected model using our q.c. ex-
tremal algorithm. The disk-topology of the surface is main-
tained. i.e., no cones or cuts are introduced. Top row: a tex-
ture of regular grid is mapped onto the surface. Bottom row:
a quadrangular mesh (left) is obtained by sampling the para-
metric domain (right). In contrast to Figure 18, here we use
the original surface metric.

ture many common types of requirements needed in applica-
tions. For example, the parametrization may need to be close
to isometric, and dilatation does not take area distortion into
account. In other cases, we may want the parametric lines
to be aligned with features etc. One can use extremal quasi-
conformal maps in composition with a metric defined using
a different parametrization type as explained in Section 4.2.
Figure 18 shows several examples of this type.

Figure 19 demonstrates the behavior of our algorithm
when pushed to the limit. A multiply connected ball shaped
surface with twelve pentagonal holes is mapped to a disk
without introducing any cuts. One of the holes is mapped
to the boundary of the disk while all the others are mapped
to fixed circles inside the disk. With such extreme boundary
conditions, large amount of conformal distortion is unavoid-
able. Nevertheless our algorithm manage to produce a bijec-
tive map without any foldovers. Harmonic map with exact
same boundary conditions is much smoother. However the

source

ARAP q.c.

Figure 14: Image deformation. A doughnut is deformed to
have different thickness using ARAP and extremal q.c. map.
Note the foldovers ARAP develops.

0.6

0.3

0
Beltrami Harmonic ARAP

Beltrami ARAP MIPS

Figure 15: Comparison of the results for several energies:
an extremal quasiconformal map, harmonic, ARAP, MIPS.
As MIPS energy is infinite at foldovers, it was initialized on a
less challenging configuration with bijective output of ARAP.

conformal distortion is extremely high, leading to more than
800 flipped triangles. ARAP parametrization produce simi-
lar result with more than 600 flipped triangles.

6. Conclusions and future work
From computational point of view, quasiconformal maps,
i.e. maps with globally bounded dilatation, are a natural way

source
irregular

regular

Figure 16: Comparison of maps obtained for regular and
irregular meshes

c© 2012 The Author(s)
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192 triangles 784 triangles 3136 triangles

Figure 17: A sequence of maps obtained by mapping a
square to a wedge shape; at each resolution, an irregular
mesh is used.

ARAP q.c.

Figure 18: Combining extremal quasi-conformal
parametrization with other metric. Top, left: ARAP
parametrization; Right: q.c. parametrization in ARAP met-
ric reduces artifacts near constraints at the cost of increased
distortion elsewhere. Bottom: q.c. parametrization in ARAP
metric is used to move markers to desired positions.

to describe bijective maps, because for practical purposes,
arbitrary high dilatation is as bad as the lack of bijectivity.
This class of maps is almost as broad as all bijective maps,
and considering extremal maps makes it possible to define
a unique quasiconformal solution for problems with fixed
boundaries. As we have demonstrated, although the problem
is nonlinear, extremal maps can be approximated efficiently

extremal q.c.

extremal q.c. harmonic

Figure 19: A ball is mapped to a disk with circular holes.
One of the pentagonal holes on the ball is mapped to the
outer boundary of a disk. A harmonic map results in a map
with more than 800 flipped triangles.

and robustly. At the same time, our approximation does not
guarantee that the resulting approximate map is locally bi-
jective everywhere.

We view developing a truly discrete concept of extremal
quasiconformal maps as a promising direction. The gener-
alization is far from trivial, as simply defining the extremal
map as the global minimum of maximal per-triangle dilata-
tion functional does not retain most attractive properties of
the smooth quasiconformal maps.

Extension to surfaces of arbitrary genus and surfaces
with cones. An important limitation of the described
method is its inability to handle surfaces of arbitrary
genus, and target domains with cones (cf. [SSP08, BGB08,
BZK09]). We briefly outline how these cases can be han-
dled, leaving a detailed specification of the algorithm and its
practical evaluation as future work.

The overall approach is to use local simply connected
charts to define the map. In fact, a single chart, obtaining by
cutting the surface to a disk is sufficient, but the reasoning is
easier to explain with multiple overlapping charts. Suppose
the surface is covered by such charts.

Recall that the algorithm involves interleaved computa-
tion of a parametrization f (z) and the quadratic differential
φ(z). We can define these locally, using a conformal atlas:
for each chart a conformal map to the plane is defined, as-
signing to each point p its coordinate z(p). We assume that
these conformal maps are consistent, i.e. for two overlapping
charts, with coordinates z(p) and z′(p), in the overlap area
the composition of conformal coordinates w ◦ z−1 = χ is a
conformal map.

We can now define a parametrization f z and a quadratic
differential φ

z for each chart, requiring consistency. The con-
sistency for the maps f z can be imposed in the usual way, as
it is done in, e.g., [SSP08]: the maps f z and f w coincide,
up to a rigid translation and rotation by an angle kπ/2, i.e.
f w = eikπ/2 f z. For quadratic differentials the transformation
rule, (see Section 3) is φ

w(w)χ2
z = φ

z(z). As the quadratic
differential is related to the metric tensor of f , the rigid trans-
form between f z and f w values does not affect it.

As a result, we can obtain a similar algorithm for each
chart, with additional constraints imposed on maps and
quadratic differentials between charts.
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