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Abstract

The quality of a global parametrization is determined by a number
of factors, including amount of distortion, number of singularities
(cones), and alignment with features and boundaries. Placement of
cones plays a decisive role in determining the overall distortion of
the parametrization; at the same time, feature and boundary align-
ment also affect the cone placement. A number of methods were
proposed for automatic choice of cone positions, either based on
singularities of cross-fields and emphasizing alignment, or based
on distortion optimization.

In this paper we describe a method for placing cones for seamless
global parametrizations with alignment constraints. We use a close
relation between variation-minimizing cross-fields and related 1-
forms and conformal maps, and demonstrate how it leads to a con-
strained optimization problem formulation. We show for boundary-
aligned parametrizations metric distortion may be reduced by cone
chains, sometimes to an arbitrarily small value, and the trade-off be-
tween the distortion and the number of cones can be controlled by
a regularization term. Constrained parametrizations computed us-
ing our method have significantly lower distortion compared to the
state-of-the art field-based method, yet maintain feature and bound-
ary alignment. In the most extreme cases, parametrization collapse
due to alignment constraints is eliminated.
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1 Introduction

Global surface parameterization has a variety of uses, including
surface quadrangulation, tiling the surface seamlessly with texture
maps and solving equations on surfaces. Many applications re-
quire constrained parametrizations, with parametric lines aligned
with surface boundaries, creases, features, or user-specified direc-
tions.

A global parametrization can be defined as a flat metric on the sur-
face, with isolated cones where all Gaussian curvature is concen-
trated. If the surface is cut to a disk with the cut going through all
cones, the metric determines a mapping to the plane up to a rigid
transform.

In the absence of constraints, cones may be necessary either for
topological reasons (for closed surfaces of positive genus), or to
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reduce a measure of parametrization distortion, most commonly
deviation from isometry. Additional constraints on parametric
lines may require additional cones: for example, an unconstrained
parametrization of a planar mesh is perfectly isometric, while
boundary alignment may require a parametrization with cones.

30 cones

smoothness-based

metric-based

0.0

0.8

0
%

4
0
%

0
.5

0
.0

0
%

4
0
%

0
.5

0
.0

42 cones

Figure 1: Quadrangulation results for cone locations found using
the field optimization of [Bommes et al. 2009] (top), and with our
method (bottom) with visualized isometric distortions computed as
indicated in Section 7.

Among recent methods, [Bommes et al. 2009] uses a guidance field
and constraints on parametric variables to align the parametrization
with features. The problem of determining cone positions based on
distortion was considered by a number of authors. Most recently,
[Myles and Zorin 2012] proposed incremental flattening, a way to
evolve the metric of the surface, concentrating curvature at isolated
points which become cones. The method produces low-distortion
parametrization for a variety of surfaces, but does not allow for fea-
ture alignment.

In this paper, we present an algorithm for concentrating curvature of
a surface at cones in the presence of feature alignment constraints,
driven by distortion minimization. Our framework unifies methods
based on field smoothing [Bommes et al. 2009], and conformal map
ideas [Myles and Zorin 2012] in a common framework suggested
by the notion of a connection 1-form [Crane et al. 2010]. This view
makes it possible, on the one hand, to control alignment with fea-
tures precisely, and, on the other hand, include metric distortion
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directly in the optimization energy.

We demonstrate that in general if an arbitrary number of cones can
be introduced, the metric distortion can be made arbitrarily low, if
meshes can be refined. We show that a smoothness term in the en-
ergy provides a natural control of the trade-off between the number
of cones and metric distortion.

2 Related work

A broad overview of quadrangulation and field-guided techniques
is given in [Bommes et al. 2012]. Here we focus on the works most
relevant to our goals.

The main foundation of our work includes the work on [Myles and
Zorin 2012], [Ray et al. 2008], [Bunin 2008b] and [Crane et al.
2010]. We show how considering cross-fields and conformal maps
in a unified framework based on 1-forms [Crane et al. 2010] (re-
ferred to as field curvature in [Ray et al. 2008]), leads to a uni-
fied formulation for the problem of placing cones for constrained
parametrization. Our methods include both the greedy approach of
[Bommes et al. 2009] for fields and [Myles and Zorin 2012] for
conformal maps as special cases. We discuss the relation of our
work to these papers in detail in the next sections.

While the details of our work is most closely related to [Bommes
et al. 2009] in terms of cone placement, similar field-based ap-
proaches were developed in [Ray et al. 2006; Kälberer et al. 2007];
curl reduction in [Ray et al. 2006] is particularly relevant.

Various ways of reducing distortion of conformal parametrization
are considered in [Jin et al. 2004; Ben-Chen et al. 2008; Springborn
et al. 2008]; these works do not consider alignment constraints.

The method of [Ray et al. 2009], based on [Palacios and Zhang
2007], generates smooth fields with fewer cones on geometrically
intricate or noisy data by smoothing surface curvature. In contrast,
our method trades off between distortion minimization and field
smoothness, but could also, in principle, use curvature smoothing
to reduce cones further.

Techniques based on the construction of a base domain using sim-
plification offer good control over the number of cones, and typi-
cally result in a relatively even distribution [Eck et al. 1995; Lee
et al. 1998; Khodakovsky et al. 2003; Marinov and Kobbelt 2005]
as well as [Daniels II et al. 2009; Daniels et al. 2009; Pietroni
et al. 2009; Tarini et al. 2010]. These methods can only handle
parametrization alignment by including the edges to align to in the
boundaries of the triangles/quads of the base domain. The distor-
tion is often suboptimal for the number of cones, and difficult to
control. A number of methods [Gu and Yau 2003; Dong et al. 2006;
Tong et al. 2006; Ben-Chen et al. 2008; Springborn et al. 2008] use
global harmonic or conformal parametrizations with cones; among
these, [Dong et al. 2006] and [Ben-Chen et al. 2008] and [Spring-
born et al. 2008] present automatic cone placement. [Jin et al.
2008; Lai et al. 2009] parameterize a surface by flattening the met-
ric by uniformization using Ricci flow, and concentrating curva-
ture at user-specified cone locations. These conformal parametriza-
tion methods can only handle boundary constraints for simply con-
nected domains, not internal features or multiply-connected bound-
aries.

3 Background

We start with summarizing basic concepts we use in the paper. As
our formulations make significant use of differential geometry, we
refer the reader unfamiliar with these concepts to [O’Neill 2006].

Aligned seamless parametrizations. A a global parametrization
f of a mesh M is obtained by cutting it to a topological disk Mc,
and mapping it to the plane. The points on the cut (seam) consisting
of a number of seam curves, get two or more distinct parametric

values. A global parametrization f defines a metric ∇fT∇f on

the mesh, which is required to be flat at all points of the seam,
excluding isolated points (cones). In this case, the metric does not
depend on the choice of seam curves, as long as the cones remain
the same. Conversely, a cone metric g on a surface M is a metric
with zero discrete Gaussian curvature everywhere except at the set
of cones C = {cj} , j = 1 . . .M , with cone angles αj > 0,
corresponding to curvatures Kj = (2π − αj)δcj . A cone metric
defines a global parametrization uniquely, up to the choice of the
seam and a global rigid transformation.

A seamless parametrization f has the following property: if p1 and
p2 are the points on the cut mesh Mc corresponding to the same
point p on the seam, then the Jacobians of the parametrization at
p1 and p2 differ by a rotation r by a rotation angle kπ/2, where k
is an integer (cf. Figure 2). Intuitively, a parametrization is seam-
less, if the parametric lines can be continued across seams smoothly
(although a u-line may become a v line or the other way around).

Notation for metric. We use two metrics on the surface, of-
ten together: the Euclidean metric inherited from R3, and the
parametrization metric g. All quantities related to metric g have
subscript g, and those related to the Euclidean metric have no sub-
script. K denotes the Gaussian curvature, κ the geodesic curvature
of a curve.

r = Rkπ/2

t unconstrained

quadrangulation

unconstrained

r = Rkπ/2

t integer

seamless
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r q + t

Figure 2: Seamless parametrization

Parallel transport and holonomy. Formulating the alignment con-
ditions in differential form requires a way to compare vectors at dif-
ferent points on the surface without introducing global coordinates.
In a metric g, a parallel transport of a vector v along a curve γ can
be defined as follows (cf. Figure 3). Suppose the signed angle (in
metric g) from the vector to the curve tangent along a segment of
length ds of the curve changes by dθ. The tangent vector itself ro-
tates by κgds, where κg is the curve geodesic curvature. The total
rotation of the vector in metric g can be computed as dθ − κgds,
which should be zero for parallel transport. This yields a direct for-
mula for the total change of the angle from the parallel-transported
vector to the tangent tend at the endpoint of γ:

θend − θstart =

∫

γ

κg(s)ds = κtot
g [γ] (1)

where the angle can include an integer number of full rotations. We
introduce the notation κtot

g [γ] for the total geodesic curvature along
a curve in a metric g, and refer to it as the rotation angle of a curve
with respect to metric g, or parametrization rotation angle.

θstart

θend

γ

Ag(γ)

γ

(a) Parallel transport (b) Holonomy

Figure 3: Parallel transport and holonomy

A seamless parametrization can be defined in terms of holonomy
angles without relying on the choice of the seam. The integral in



the formula (1) for a positively-oriented contractible loop in a flat
metric is 2π, and the holonomy angle is the deviation from this
value (cf. Figure 3):

Ag(γ) = 2π − κtot
g [γ]. (2)

For a cone metric, any two homotopic curves in M \ C have the
same holonomy angle, and for any counterclockwise curve γ encir-
cling a single cone cj , Ag(γ) = Kj . The holonomy angle for any
curve is completely determined by the holonomy angles on a set of

loops γi including a set of non-contractible loops γh
i in M , and a

single loop γc
j around each cone cj ; when we need not distinguish

between two types of curves, we drop the superscripts.

A cone metric g is seamless, if for all loops γi,Ag(γi) is a multiple
of π/2, in other words,

κtot
g [γi] =

kiπ

2
, (3)

where ki is an integer (cf. [Lai et al. 2009]).

As-rigid-as-possible energy. One of the primary measures
of parametrization quality is distortion: it is desirable for a
parametrization to be close to isometric in a metric. We use the as-
rigid-as-possible (ARAP) energy, to capture deviation from isome-
try:

EARAP =
1

2

∫

M

min
R∈SO(2)

‖∇f −R‖2 (4)

where the integration is over the surface. As it is shown in [Liu
et al. 2008], the integrand can be expressed directly in terms of
signed singular values σ1 and σ2 of ∇f , as (σ1 − 1)2 +(σ2 − 1)2.

For a conformal metric with metric tensor g = e2φI , the energy

EARAP(g) can be approximated by a quadratic energy:

1

2

(

(σ1 − 1)2 + (σ2 − 1)2
)

= (eφ − 1)2 ≈ φ2

4 Parametrization alignment using connec-

tion 1-forms

We describe a unified view of aligned conformal metric and
variation-minimizing cross-fields (that is, cross-fields minimizing
an energy of the type defined in [Ray et al. 2008] and [Bommes
et al. 2009]). Our formulation is based on [Bunin 2008b], describ-
ing alignment constraints on conformal metric and presenting the
connection form view of cross-fields [Crane et al. 2010; de Goes
and Crane 2010]. Formulating the aligned-metric problem in con-
nection form allows us to handle all types of constraints in a unified
manner, and naturally extend, the greedy approach of [Myles and
Zorin 2012] to the aligned metric setting.

We give a basic description in the case of smooth surfaces, as in
this case the relation between cross-fields and conformal metric is
most transparent, and then describe our algorithm along with the
discretization.

Parametrization and metric alignment. Suppose a set of smooth
feature curves Γm, m = 1 . . .M , is marked on the surface, in-
cluding the boundary curves (a single boundary loop with corners
can be partitioned into multiple curves). The curves intersect at the
endpoints only, and they form nonzero angles at intersection points.
We say that the parametrization is feature-aligned if each curve Γi

is an isoparametric curve along the u or v direction (note that if a
seam crosses the curve, its parametric direction may change). We
refer to the part of the boundary for which feature alignment con-
straints are not specified as free; this may include isolated points in
the interior of the mesh.

We say that a cone metric is aligned with a set of feature curves,
if the corresponding parametrization, for a choice of rigid trans-
formation is aligned. We will show how the alignment constraints

can be expressed in terms of the metric directly, without using the
parametrization f .

In our discussion, unless otherwise noted, we cut the mesh along
feature curves converting each curve into two boundary curves, so
we do not make a distinction between features and boundaries.

Boundary and feature alignment in differential form. Consis-
tently with [Bunin 2008b], all boundary curves are assumed to be
positively (counter-clockwise) oriented, with t and n = t⊥ denot-
ing, respectively, the unit tangent and normal for a curve (boundary
or otherwise). Consequently, boundary normals point inward.

Observe that parametric lines are geodesic in metric g, i.e. have
zero curvature. In addition, if two lines intersect, the angle between
them in g has to be a multiple of kπ/2. If all feature curves form
a connected set, these two conditions would be sufficient to ensure
that each of them is aligned with one of two parametric directions,
i.e., that the parametrization is aligned.

For multiply connected sets we need to find the parametric-domain
angle between two disjoint isoparametric curves Γ1 and Γ2. Con-
sider a curve γ connecting these curves, starting at p1 and ending at
p2. Let θi denote the angle from the tangent vector of γ to the tan-
gent vector of Γi at pi. The condition that ensures correct relative
orientation of two curves Γ1 and Γ2 is [Bunin 2008b]

κtot
g [γ] =

kγπ

2
+ θ2 − θ1 (5)

where again the curvature and length parametrization are with re-
spect to metric g. This leads to the following definition of alignment
in terms of metric:

• Boundary curvature. On a feature curve Γi, κg = 0, except
at the endpoints. At an endpoint p where two curves meet, the
curvature of the joint curve is κg(p) = kπδp/2, for an integer
k; in a more concise form, on the boundary κg =

∑

i kiπδpi ,
where kiπ/2 are angles at curve joints.

• Component alignment. For any path γ connecting boundary
curves, (5) holds. The integer kγ may depend on the choice
of the curve γ, but as long as all homology basis loops in M
have homology angles kπ/2, it is sufficient to enforce this
condition for a single curve: the rest will automatically be of
the same form.

Figure 4 illustrates boundary alignment paths for a planar shape.

Figure 4: Boundary alignment paths

We note the similarity between the holonomy loop condition (3) and
boundary alignment constraints; the only difference is the presence
of the θ2 − θ1 term. For brevity, we will treat these constraints as
a single group, and define ∆θ = θ2 − θ1 for homology loops to be
zero.

If the genus of the surface is g, there are n cones and we have
m boundary loops, then the total number of integral constraints is
n+ 2g +m− 1 (holonomy loops and alignment).



4.1 Conformal metrics and variation-minimizing

cross-fields

Aligned conformal metric. The case of particular importance to
us is the case of conformal cone metrics. For these metrics, g =
e2φI , where φ is the log scale factor. In this case the angle change
expressions for parallel transport are linear in φ. More specifically,
the geodesic curvature is given by

κg = e−φ(κ− 〈dφ,n〉),

where we use 〈·, ·〉 for evaluation of a 1-form on a vector, and length

element dsg = eφds.

This leads to the following set of conditions derived in [Bunin
2008b]:

• (C1) Gaussian curvature. ∇2φ = K − Kg , where Kg is

zero except at cones, where it is
kjπ

2
δcj .

• (C2) Boundary curvature. 〈dφ,n〉 = κ − κg on all bound-
aries Γi. κg is zero everywhere on the boundary except joints

pj , where it is
kjπ

2
δpj .

• (C3) Homology loops and component alignment.
∫

γi
〈dφ,n〉ds = kiπ/2 + κtot[γi] + ∆θi,

Proposition 1. In general, no conformal map satisfies seamless,
boundary, and feature-alignment constraints.

Proof. In the absence of free boundary points, the scale factor φ is
determined by the Poisson equation (C1) ∇2φ = K −Kg on M ,
with the Neumann condition (C2) 〈dφ,n〉 = κ − κg . Under mild
assumptions on the surface and boundary, this problem has a unique
solution defined up to a constant [Dindoš 2008], and the remaining
constraints on holonomy angles of homology loops and alignment
constraints (C3) cannot be satisfied.

Cross-fields and frames. A cross-field is an assignment of quadru-
ples (e, e⊥,−e,−e⊥) of unit-length vectors, separated by right
angles, to all points on the surface excluding isolated points (singu-
larities). Cross-fields are commonly used as a guidance field for a
global parametrization, with cones located at field singularities and
gradients of parametric coordinates aligned in least squares sense
with the field vectors. For a cross-field, the alignment constraints
are straightforward: we say that a cross-field is aligned with a set
of feature curves, if the tangents of the feature curve are parallel to
one of the vectors of the cross-field at each point.

While in general, it is impossible to separate a cross-field into four
continuous unit-vector fields, on a simply connected domain it is
possible; in particular it can be done on the cut surface Mc. We
assume that e is a smooth field onMc; (e, e⊥) defines an orthonor-
mal frame on the surface. At two points p1 and p2 corresponding
to the same point on a seam curve the frames are related by a kπ/2
rotation, with k dependent only on the curve.

To relate to the metric formulation, we can similarly define the
alignment conditions for a cross-field using a local differential
quantity, the (Euclidean metric) connection 1-form. While this
makes the constraints more complicated, in this form, the close re-
lation between cross-field and conformal maps becomes clear.

The connection 1-form for the frame is identical to the one-form
defined directly for the discrete case in [Crane et al. 2010]. Specif-
ically, for a global frame (e, e⊥) on M \ C, we define the 1-form
ω by

〈ω,v〉 = e⊥ · ∇ve, (6)

where ∇v is the surface derivative of e in the direction v. Evaluated
on a tangent vector v, the form produces the rate of rotation of the
frame in direction v. Then the relative orientations of the frames at
points p1 and p2 can be obtained by integrating this rotation along a
path γ connecting these points. Observe that for a displacement ds

in a direction v along a curve γ, the change dθ in the angle between
e and the tangent to the curve can be represented as ω(v)ds −
κds, the sum of the rotation of the frame, and the rotation of the
tangent vector due to the geodesic curvature of γ. Not any 1-form
corresponds to a cross field, which leads to additional conditions
on the integrals of the 1-form on loops. For a closed loop, the full
change in this angle should be of the form kπ/2, as after a full circle
the cross-field should be mapped to itself. For loops γǫ of length ǫ
around cones, in the limit the condition on the loop leads to one of
Cartan’s structure equations for frames, which can be written in the
form dω = (K −Kg)β1 ∧ β2, where 1-forms βi correspond to the
frame: 〈β1, e〉 = 1, 〈β1, e⊥〉 = 0, 〈β2, e⊥〉 = 1, 〈β2, e〉 = 0.

• (F1) Gaussian curvature. ⋆dω = Kg −K.

• (F2) Boundary alignment. 〈ω, t〉 = κ− κg along all Γi.

• (F3) Holonomy loop and boundary component alignment.
∫

γi
〈ω, t〉ds = kiπ/2 + κtot[γ] + ∆θ.

We note the similarity of the alignment constraints and constraints
for the conformal maps, which we will clarify shortly, once we in-
troduce a class of variation-minimizing cross-fields.

Variation-minimizing cross-fields. Clearly, there are many cross-
fields satisfying the constraints above, as these restrict the field ori-
entation on the boundary curves only. We can choose a unique field
among these by picking the one for which ‖ω‖22 =

∫

ω ∧ ⋆ω is
minimal, i.e. the integral of the rotation rate over all directions and
all points is as small as possible. This is exactly the functional used
in [Crane et al. 2010] as well as in [Ray et al. 2008; Bommes et al.
2009] in different variables.

To make the condition on ω explicit, we use the Hodge decompo-
sition of ω. As we are considering a domain with boundary, the
spaces used in the decomposition require specification of boundary
conditions, and several decomposition choices are possible [Cap-
pell et al. 2006]. If a form ω satisfies Dirichlet (tangent) conditions
on the boundary 〈ω, t〉 = b,

ω = dξ + δψ + h (7)

where ξ is a function vanishing on the boundary, ψ is a 2-form
such that δψ satisfies boundary conditions, and h is a harmonic 1-
form, i.e. it satisfies both δh = 0 and dh = 0 and vanishes on the
boundary.

We observe the following:
Proposition 2. The minimal-norm form ω satisfying alignment
condition has zero closed part dξ:

ω = δψ + h; (8)

The co-closed and harmonic parts are defined uniquely by the
boundary constraints.

The proof of this proposition can be found in the appendix. In
particular, we observe that the variation-minimizing field has a co-
closed 1-form:

δω = 0 (9)

Conformal metric alignment constraints and cross-fields. Com-
paring conformal metric constraints and constraints for the field ex-
pressed in terms of a 1-form, we observe that they are very similar.
This is not that surprising: observe that a conformal parametrization
defines a frame (e, e⊥) by setting e = fu/‖fu‖, the unit paramet-
ric line tangent for u direction.
Proposition 3. For a conformal metric, the connection 1-form of
the frame is ω = −⋆dφ (i.e. ⋆ω = dφ), where ⋆ is the Hodge
star; i.e., with standard identification of 1-forms and vectors, ω is
the gradient of φ rotated −90 degrees (see appendix).

Comparing this formula to the Equation 8, we observe that the
difference between the connection 1-form for a general variation-
minimizing cross-field and the field corresponding to a conformal



map is the harmonic part. In other words, the following proposition
holds:
Proposition 4. An aligned variation minimizing cross-field corre-
sponds to an aligned conformal map if and only if its (co-closed)
connection 1-form is co-exact.

The relationship between conformal maps and cross-field is the one
between closed and exact forms: the difference is the space of har-
monic forms. Moreover, the closest in the 1-form norm conformal
map for a given cross-field can be obtained by solving a Poisson
equation. Setting φ = −⋆ψ, and using dh = 0 and the fact that h
vanishes on the boundary, we get

∇2φ = ⋆d⋆dφ = −⋆dω

with Neumann conditions 〈dφ,n〉 = 〈ω, t〉 on the boundary.

There are several important practical consequences of our observa-
tions about the relation between 1-forms and conformal metrics.

1. φ2 for φ computed from ω can be used as a measure of metric
distortion;

2. ‖ω‖2 yields direct control over smoothness of the cross-field
and, indirectly, the number of cones;

3. The harmonic part h = ω+⋆dφmeasures how close is a field
to a conformal metric.

In the next section, we discuss how these observations can be used
to derive an algorithm following the ideas of [Bommes et al. 2009]
and [Myles and Zorin 2012].

Remark. A useful interpretation of the co-closed connection 1-
form in terms of similarity structure on the surface is shown in Fig-
ure 5. On the cut mesh Mc which is simply connected, ⋆ω can
be integrated to yield a globally defined φc, but with mismatched
values on the cut. Due to co-closedness condition, the jump in the
resulting value of φc is constant along the cut. In other words, one
can think about 1-form as defining a flat conformal metric on any
simply connected chart on M \ C, with transitions between charts
given by similarity transforms, instead of isometries as for well-
defined global parametrization. In our case, transition from Mc to
itself across the cut is the similarity transform, with scaling given
by es, where s = φc

1 −φc
2, the difference in values of φc across the

cut.

Figure 5: Interpretation of a closed, but non-exact 1-form ⋆ω
in terms of a similarity structure. The difference in scale of the
parametrization onMc computed from ω is constant across the cut.

5 Algorithm

5.1 Overview

The idea of the algorithm is to evolve the connection 1-form ω,

gradually expanding the domain Ωf on which the constraints (F1–
F3) are enforced, and resolving the energy minimization problem
each time. The central element of the algorithm is the definition of

the domain Ωf and how it is expanded.

Our discretization, described below, necessarily introduces an ap-
proximation in the meaning of φ, which is used only to measure

distortion and cannot be used to compute exact parametric lengths
in contrast to, e.g. [Springborn et al. 2008]. On the other hand, our
discretization of (F1–F3) and ω induces an explicitly constructable
feature-aligned cross-field (cf. Appendix B) from which we com-
pute the final parametrization.

We use dual paths (chains of triangles) to discretize all paths (ho-
mology loops, alignment paths, and boundary loops). In the dis-
crete case, all constraints can be thought of as loop or path con-
straints (the Gaussian curvature constraints corresponds to a loop
around a vertex, and the Neumann boundary condition corresponds
to a path connecting boundary edges on the two sides of a boundary
vertex), with loops defined as chains of triangles (Figure 6).

v

γ
v

v

γ
v

Figure 6: The discretization of interior or boundary curvature con-
dition at a vertex v can be written in terms of the corresponding
loop or path γv around the vertex.

The domain Ωf thus can be naturally defined as a collection of
paths for which rotation or holonomy angles are fixed. The triangles

of these paths form Ωf . More specifically, we consider the basis
of paths on the whole mesh M , consisting of 2g homology loops,
max{m−1, 0} alignment paths, and V loops/paths around vertices

shown in (6). The domain Ωf is characterized by a vector If of
indices of loops and paths for which a constraint was fixed. Fixing
a constraint means choosing an integer ki for a loop or a path (F3)
or a curvature (F1). As the initial domain, we start with a set of
loops around all boundary components, i.e. all paths corresponding
to Neumann constraints are included in the beginning.

Loops and paths can be added to a domain in different ways; we
use a variation of [Bommes et al. 2009] described in greater detail
below.

At each update step after new paths are added to If , we compute the
variation-minimizing 1-forms ω, as close as possible to a conformal
metric, i.e. minimizing h, and satisfying all constraints.

Among these 1-forms, we choose the one that minimizes an energy

Ereg = αsmooth‖ω‖22 +
1

AM

‖φ‖22

= αsmooth(‖dφ‖22 + ‖h‖22) +
1

AM

‖φ‖22 (10)

where AM is the surface area, which we use to make the parameter
non-dimensional. The parameter αsmooth is the only parameter of
the algorithm. In Section 6 we show that the parameter is neces-
sary, in a sense that with αsmooth = 0 a very low (if the mesh can be
refined, arbitrarily low) distortion can be achieved at the expense of
introducing cone chains. Setting αsmooth high reduces the number of
cones while permitting greater distortion. As a result of recomput-
ing ω, loop holonomies and path rotations are modified, and new

paths are selected for inclusion in If .

5.2 Discretization

The core computational part of the algorithm consists of solving
an energy-minimization problem with constraints. We need to dis-
cretize the log scale factor φ, the harmonic 1-form h, and the con-
straints (F1-F3) on the form, including discretization of integrals on
loops and alignment paths.

Although the 1-form ω is defined on Ωf only, we assign variables

φ and h for the whole mesh as detailed below; outside Ωf , the
constraints are not imposed.
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Figure 7: The Hodge dual ω of a 1-form ψ is given via (11).

Discretizing 1-forms and the conformal factor. We discretize the
conformal factor φ as a vector φ̄ of values at the V vertices of the
mesh. The standard 1-form discretization on edges is used for dφ,
with φj − φi assigned to the edge eij . The connection 1-form
−⋆dφ, requires defining a Hodge star. Recall that on 1-forms iden-
tified with vectors, the Hodge star acts as a 90-degree rotation. Sim-
ilarly to the non-conforming FEM approach of [Pinkall and Polthier
1993; Polthier 2000], we define the Hodge dual form by values on
triangle midlines (Figure 7). We note that in the absence of obtuse
triangles, this can be viewed a different representation of commonly
used DEC dual forms defined on dual edges connecting circumcen-
ters. Explicitly, the relation between values of a 1-form ψ defined
on edges of the mesh, and its Hodge dual ω, defined on midline
segments, is given by

ωi =
1

2
(ψk cotαk − ψj cotαj) , (11)

where index of the midline segments coincide with parallel edges,
angles αi are indexed by vertex, (i, j, k) is a circular permutation
of (1, 2, 3), and a counterclockwise orientation is chosen on edges.

It is more efficient to represent ω directly as a co-closed and har-
monic part using its Hodge decomposition, which also applies in
the discrete case: ω = −⋆dφ + h. A low-dimensional repre-
sentation of h can be obtained as follows. Consider a set γi of
nh := 2g+max{m−1, 0} non-contractible basis loops, wherem
denotes the number of boundary components and g the genus. The
harmonic 1-form h can be written with a coefficient vector h̄:

h =
∑

γi∈nh

h̄iηi, (12)

where each closed harmonic form ηi is an exact form on the cut sur-
face M \ γi, but not across γi. ηi can be determined by computing
a harmonic function uηi that has zero tangent conditions along the
boundary ofM and a discontinuity on γi with matching derivatives
on both sides so that ∆uηi is still well-defined on γi. We discretize
uηi with non-conforming linear elements, with degrees of freedom
on edge midpoints, and two different values for midpoints on γi re-
lated by a constant shift. This ensures the continuity of ηi = duηi .

Discretizing integrals on paths. For the purposes of geodesic cur-
vature computation, we view these paths as consisting of midline
segments: a path γ is formed by segments m1,m2, . . .mr (cf.
Figure 4). This path representation naturally matches the 1-form ω,
as its values are defined on the same segments mj . Thus, the inte-
gral of ω along a discrete path γ is precisely the sum of the values
of ω along this path (cf. [Crane et al. 2010]), with sign adjusted for
direction:

∫

γ

〈ω, t〉ds =
r

∑

j=1

±ωj (13)

The total geodesic curvature along a path γ is computed as the sum
of angles between sequential midline segments, computed after the
corresponding triangles are rotated about the shared edge to be co-
planar:

κtot[γ] =

r−1
∑

j=1

βj (14)

Discretizing constraints (F1-F3).

We discretize the constraints on the whole mesh M at once, on a
complete basis of loops and paths, instead of adding constraints

one-by-one. Constraints for loops not included in If are dis-
abled by introducing a free variable for the corresponding turn-
ing/holonomy angle.

The Gaussian curvature (F1) −⋆dω = ∇2φ = K − Kg and the
boundary alignment conditions (F2) 〈ω, t〉 = 〈dφ,n〉 = κ − κg

together form a Poisson system for φ with Neumann boundary con-
ditions, which are discretized with well-known cotangent weights.

For a vertex v, let VA(v) denote the sum of angles at the vertex on
all neighboring triangles. If v is an interior vertex, its Gaussian cur-
vature is 2π−VA(v); if it is on the boundary, its geodesic curvature
is π − VA(v). The cone metric geodesic and Gaussian curvatures
are of the form kvert

i π/2. Denoting by b the vector of V geodesic

and Gaussian curvatures defined in this way, and by k̄vert the vector
of integers kvert

i , the linear system for (F1-F2) in matrix form is

Lφ̄− π

2
k̄vert = b

where L is the standard V × V Laplace matrix discretizing −∇2.

The nh constraints (F3) along homology loops and boundary com-
ponent alignment paths require κtot[γ] computed using (14), and
∆θ as defined in Section 4. This yields the right-hand-side of the
equations in matrix form:

Bφφ̄+Bhh̄− π

2
k̄path = c.

where π
2
k̄path, of length nh, are the homology loop holonomy an-

gles and relative alignment turning angles, and c is ∆θ − κtot[γi]
for the loop or path γi.

The (i, j) entry of the nh × nh matrix Bh is
∫

γi
〈ηj , t〉ds com-

puted via (13). The nh × V matrix Bφ is computed as −SR∗Dd,

where Dd is the discrete exterior derivative matrix, R∗ computes
the Hodge dual with entries according to (11), and S is a matrix of
±1 for path integration via (13).

We collect these systems together in a more compact form for a
complete set of V + nh constraints for the energy minimization
problem.

Cφφ̄+ Chh̄− π

2
k̄ = d, (15)

where Cφ :=

[

Bφ

L

]

, Ch :=

[

Bh

0

]

, k̄ :=

[

k̄path

k̄vert

]

, and d :=

[

b
c

]

.

The variables in this system are φ̄, h̄ and k̄. k̄ can be partitioned into

subsets k̄free and k̄fixed, the latter consisting of elements with indices

included in If . k̄free are free variables disabling constraints outside

Ωf . While adding constraints one-by-one is completely equivalent
to adding and removing free variables, this way of keeping track of
Ωf allows to keep the constraint matrices fixed.

Change of basis of paths. Rather than using k̄ directly to define
If , we choose a different basis in the space of paths, with coeffi-
cients p̄. The reason for this change of basis is empirical: we have
observed that a greedy algorithm for fixing constraints yields some-
what better results if the basis of loops, rather than including vertex
loops directly, consists of loops “growing” from boundary in a way
similar to the definition of [Bommes et al. 2009].

To define a new basis, we construct a forest F of dual trees; the root
of each tree is a boundary triangle, and the tree contains a chain
of triangles along the boundary component. The forest spans the
whole surface (cf. Figure 8). A dual edge not in the forest closes a
loop or connects two trees in the forest by an alignment path. All



Figure 8: The dual forest F is in brown. The two blue edges corre-
spond to loops whose holonomies are set by boundary curvature.

such loops and paths are independent; we denote this set of paths
G. We denote by π

2
p̄ the vector of holonomies and turning angles

of these paths.

There is a unique linear transformation P mapping p̄ to k̄: k̄ = P p̄.
We can greatly simplify this transformation by ensuring that align-
ment paths and holonomy loops in both bases are the same. More
specifically, we identify a set of max{m−1, 0} curvesGcomp ⊂ G
for the relative alignment of boundary components. Adding the as-
sociated dual edges outside F to F creates a spanning tree from

which we identify a basis Ghom ⊂ G of homology loops using

the technique of [Eppstein 2003]. We use Gpath = Gcomp ∪ Ghom

of homology loops and boundary component alignment paths for

constraints. If p̄path is the subvector of p̄ consisting of entries for

homology loops and paths, then p̄path = k̄path. The transforma-
tion between p̄ and k̄vert is easily established using the algorithm
described in [Myles and Zorin 2012].

This yields the final form of the constraint

Cφφ̄+ Chh̄− π

2
P p̄ = d, (16)

The turning angles for the boundary alignment paths corresponding
to geodesic curvature constraints are set from the beginning, fixing
the loops denoted by the blue dual edges in Figure 8.

5.3 Algorithm

Discrete system for ω. We now evolve ω = ⋆dφ+h by minimizing
the quadratic energy (10), subject to a set of linear constraints that
consists of two parts: (1) alignment constraints (F1-F3) collected in
(16) and (2) harmonic part minimality. The latter constraint, defined
in detail below, is obtained as the standard constrained optimality
condition.

To enable only the constraints in If , we split the vector p̄ as

[p̄fr, p̄fix], where the first component consists of free variables for
unfixed constraints, and the second from constraints with already
defined angles.

The as-exact-as-possible forms ω minimize the norm of ‖h‖2 =
h̄TM1h̄, where the (i, j) entry of M1 is 〈ηi, ηj〉2 computed using

the discrete L2 1-form inner product. The usual constrained mini-
mization optimality condition leads to the constraint on h and φ:

M1h̄+ CT
h λ = 0, CT

φ λ = 0,

Cφφ̄+ Chh̄− π

2
P frp̄fr = d+

π

2
P fixp̄fix

(17)

where λ is the Lagrange multiplier for the constraint, and P =
[P frP fix].

As our constraint is derived from minimizing the norm of the har-
monic part, this term can be dropped from (10), and subject to the

constraints above, we minimize the discretized energy

Ereg,d = φ̄T

(

αsmoothL+
1

AM

Mφ

)

φ̄ (18)

whereMφ is the diagonal matrix of vertex areas which sum toAM .
The final form of the problem that we solve is

Minimize (18), with respect to φ̄ and p̄fr subject to constraints (17).

An analysis of the constraints shows that as long as φ̄ has a suffi-
cient number of degrees of freedom not fixed by (15), the harmonic
part minimization (17) is solved by h = 0; in other words, an exact
1-form ω satisfying all constraints exists.

Once the remaining number of degrees of freedom not fixed by (15)
is less than needed to have h = 0, (17) determine h and φ̄ uniquely,
so solving the optimization problem is unnecessary; the conformal
part is determined by the harmonic part minimality. We found it
convenient not to separate these stages and retain a unified formu-
lation.

Complete algorithm.

Algorithm 1 Outline of the loop-fixing algorithm

1: Construct a spanning forest of dual trees F , and from it, col-
lection of variables p̄ corresponding to path basis G.

2: Initialize If to the set of boundary loops

3: while If 6= G do
4: Add to If a set of unfixed paths Efix in G with rotation an-

gles close to integer multiples of π/2 (see the solver section
below).

5: Define free variables p̄fr for paths not in If .

6: Determine integer p̄i for turning angles for paths in Efix.

7: Solve for ω = −⋆dφ + h and p̄fr satisfying alignment and
minimal harmonic part constraints, and minimizing the en-
ergy (18).

8: end while

Once the cones, homology loop holonomies, and alignment angles
are determined by this algorithm we proceed exactly as in [Myles
and Zorin 2012], computing a seamless global ARAP parametriza-
tion satisfying all constraints. We defer the details to Appendix B,
which also explicitly relates the discrete connection ω to its natural
cross-field representation.

Using a Mixed Integer solver. The description of the evolution
above is equivalent to using the Mixed Integer solver of [Bommes
et al. 2009] on our system. However, that solver requires an ex-
plicit elimination of constraints to yield a symmetric positive defi-
nite linear system. The constraints (F1-F2) on φ, in particular, are
not amenable to elimination as the inverse of the Laplace matrix
is dense. Thus, we implemented a slower stand-in mixed integer
solver in Matlab using a similar algorithm as [Bommes et al. 2009]
with Lagrange multipliers (yielding a symmetric indefinite system)
and without local iterative updates. Specifically, Steps 4 and 6 in

Algorithm 1 collect Efix so that the total rounding is less than 0.5
and round these variables at once.

Cone location optimization. After all holonomies and turning an-
gles are determined, cone positions on the surface are optimized in
the spirit of [Bommes et al. 2009] to reduce distortion further. In
this procedure, each cone is moved to a neighboring vertex if it de-
creases the distortion energy ‖φ‖2 of the resulting connection form
ω. This can be iterated on all cones until the energy can no longer
be reduced. This stage can be followed by an optional clean-up
procedure as in [Myles and Zorin 2012] for collapsing cones not on
feature curves that are 1 or 2 edges apart.

Remark. To reproduce results similar to [Bommes et al. 2009], one
may remove the constraint minimizing the norm of h and choose a
large αsmooth weight in Ereg. See Figure (15) for an example.



Extension to general guiding feature fields. So far, we have con-
sidered the problem with alignment constraints specified on curves.
However, in practice it may be useful to define pointwise align-
ment directions on faces or edges of the mesh, without structuring
them into curves. We observe that if there is an area of the sur-
face where the alignment directions are fixed, in general there is
no parametrization that matches the field directions exactly; thus
we can only hope to compute the field in least-squares sense there.
Field singularities determine the cones in these areas.

Thus, for the purposes of cone determination we take the following
approach: we partition the surface into connected domains, with
field directions fixed on the boundary of each domain only. The
areas with the field everywhere in the interior are not considered
and cones on these areas are set by the field. We proceed to com-
pute to determine cones on each domain independently, and finally
combine the cones together and compute an ARAP parametrization.
The only modification of the algorithm needed for each subdomain
is changing the curvature of the boundary, used in the boundary
constraint (F2) to the rate of rotation of the field on the boundary,
and measure ∆θ in constraint (F3) with respect to the field direc-
tions on the connected boundaries.

The final parametrization is again obtained as in [Myles and Zorin
2012], by computing an ARAP parametrization with fixed cross-
field directions as constraints.

6 Tradeoff between the number of cones and

distortion

A fundamental question in choosing cone locations is how low
one can make the distortion, and what additional conditions need
to be imposed on the parametrization if the lowest-distortion
parametrization has an excessive number of cones.

For example, if there are no restrictions on cone and holonomy an-
gles, there is always an isometric parametrization of a mesh, ob-
tained by cutting it along a dual spanning tree and unfolding iso-
metrically along the tree. Effectively, each vertex becomes a cone.
With kπ/2 constraints on the degrees of freedom, the answer is less
obvious: clearly, if all vertices are cones, the distortion is excessive
for a smooth mesh with low discrete Gaussian curvature at vertices,
as the 1-ring around a nearly flat vertex mapped to an angle 3π/2
or 5π/2 instead of 2π, inevitably has high distortion. Thus there
is an optimal number of cones somewhere between topologically
required and all vertices.

Somewhat surprisingly, the answer to this question is that for
distortion-minimizing parametrization cones form cone chains; in
the limit case of smooth surfaces, cones converge to lines on the
surface (Figure 9).

Moreover, the following proposition holds:
Proposition 5. For a closed smooth surface with bounded total cur-
vature, and any ǫ > 0, there is a seamless parametrization which

has total metric distortion EARAP < ǫ.

A detailed outline of a proof is in the appendix, but the main obser-
vation is that one can convert a non-seamless global parametriza-
tion (which can have arbitrarily small distortion) into a seamless
ones by a local perturbation near the seam. The construction in
the proof also indicates that for a sequence of meshes with average
edge length decreasing as h, one can expect the distortion of the
distortion-minimizing solution with chains of cones to decrease as√
h which is confirmed in our experiments on simple shapes.

These observations show that simply minimizing metric distortion
is not a practical option for most applications: while the resulting
set of cones is not dense on the whole surface it may be dense along
curves, if the least possible distortion is desired. The form smooth-
ness parameter, αsmooth allows the user to choose a preferable trade-
off between the number of cones and distortion.
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Figure 9: Chains of cones for low-distortion parametrization.

7 Results and Discussion

Comparison to previous work. As our method can be regarded as
an extension of [Bommes et al. 2009] and [Myles and Zorin 2012],
our primary comparisons are to these two methods. As previously
mentioned the former (which we label MIQ) can be thought of as a
special case of our method with no harmonic part minimization and
no metric term in the energy. While [Bommes et al. 2009] does not
use an isometry measure directly in its functional, we note that it is
closely related to ‖dφ‖22, i.e. a measure of the gradient of metric
distortion. As a result, to an extent the distortion is factored in. The
field-aligned parametrization itself can be regarded as a single step
of as-rigid-as-possible parametrization [Myles and Zorin 2012]. Its
degree of distortion is similar to the related methods of [Ray et al.
2006] and [Kälberer et al. 2007], so we focus on comparisons with
this method. In all figures, distortion is measured by the following
average measure

√

1

AM

∫

M

min
R∈SO(2)

||∇f −R|| (19)

As it is discussed in Section 6, the method of [Myles and Zorin
2012] does not have a smoothness term, but has implicit regular-
ization by a different mechanism: the flattening stage. The down-
side of this approach is that there is no way to reduce distortion
below the one produced by the method if desired. As shown in Fig-
ure 14, on models without alignment constraints, our method pro-
duces similar results for a moderate choice of the coefficient of the
regularization term ‖ω‖2. On the other hand, for high values of the
parameter the results are similar to [Bommes et al. 2009] Figure 15.

At the same time, for a number of cases, even for a large value of
smoothing parameter, the difference is quite significant. An impor-
tant simple example is shown in Figure 10. In this case boundary
alignment constraints force parametrization collapse in the absence
of cones. The reason for this can be easily understood: suppose on
the ring part of the strip is h1, and on the protruding flap it is h2;
the opposite sides of each part of the shape have to be parallel in
the parametric domain if alignment conditions are imposed, so the
parametric width, defined as the length of a parametric isoline con-
necting opposite sides of a strip, remains constant around the ring,
and along the flap. Then at the place on the ring where the flap sep-
arates, the width has to be h1+h2 on one hand and h1 on the other,
i.e. h2 = 0, and the flap parametrization is collapsed.

In our method, the metric component of the energy prevents this
collapse from happening as it leads to high metric distortion, and
introduces two cones there.

Of particular interest is a comparison with [Bunin 2008a]. Our
continuum constraints for conformal maps (C1-C3) are essentially
identical to [Bunin 2008b]; however, [Bunin 2008a] uses a com-
pletely different formulation for computing a conformal metric on a
connected planar domain, using rational function approximation for
φ, and inverse Poisson formulation for determining cone positions;
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Figure 10: For the shape shown in this figure, a singularity-
free cross-field exists, but a singularity-free boundary aligned
parametrization does not.

the resulting conformal parametrization is aligned in a least-squares
sense. We observe that that method also results in a configuration
similar to ours – effectively, for close approximation of constraints
the inner boundary loop is separated from the outer by a ring of
cones (Figure 11).
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Figure 11: Example similar to [Bunin 2008a]; a sequence with
increasing smoothness factor.

Dependence on parameters. The method has one main parame-
ter, the weight of the smoothing term. Figure 15 shows the effect
of varying this term for two examples. For low smoothness, as ex-
pected, we get chains of cones described in Section 6. For high
smoothness, with no harmonic part minimization, it behaves quali-
tatively similar to [Bommes et al. 2009].

Figure 13 shows the distributions of distortion on a number of mod-
els, and the effect of taking the metric distortion into account com-
pared to optimizing smoothness only via the approach of [Bommes
et al. 2009]. We observe that we obtain an improvement in all in-
stances. Further details, including timings, on the models are listed
in Table 1. We expect the timings to be dramatically reduced by
replacing our Matlab solver with an improved solver described in
Section 8.

Figures 1 and 12 compare a quadrangulation generated from ARAP
parametrizations on Mixed Integer fields and ours, obtained after
rounding seam translations and cone parametric coordinates.
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Figure 12: Quadrangulation results for cone locations found our
method and field optimization of [Bommes et al. 2009].

Model (Figure) faces αsmooth Nour distour Tmain Topt NMIQ distMIQ

Fandisk (1) 14454 0.01 42 0.226 15.4 2.64 30 0.353

Bulge (12) 2072 0.05 16 0.296 1.85 0.217 8 0.462

Screwdriver (13) 15354 0.01 65 0.228 240 78.0 44 0.349

Screw (13) 11616 0.01 31 0.205 43.4 1.79 23 0.711

Lion head (13) 16834 0.01 50 0.186 302 55.2 62 0.222

Sculpt (13) 7342 0.01 30 0.237 15.9 0.643 8 0.596

Beetle (13) 38656 0.01 72 0.173 108 18.7 50 0.266

Casting (13) 36828 0.01 119 0.211 202 16.0 106 0.303

Mannequin (15) 14472 0.001 90 0.192 240 52.0

0.01 66 0.218 198 51.9

1.0 42 0.239 184 45.2

100.0 44 0.244 193 41.6

100.0* 32 0.296 192 41.4 32 0.274

Aircraft (15) 4656 0.001 74 0.175 14.7 5.80

0.01 52 0.183 12.9 3.56

1.0 43 0.261 13.0 3.03

100.0 43 0.288 13.6 5.53

100.0* 41 0.271 12.3 3.21 43 0.263

Table 1: The models are listed in the order in which they appear
in the figure in parentheses. Column titles: Nour and NMI are,
respectively, the number of cones in our parametrization and the
MIQ field; distour and distMI denote, respectively, the average trian-
gle distortions of seamless parametrizations produced by our result
and the MIQ procedure; Tmain and Topt are the times in seconds
for holonomy-rounding and the cone location optimization. The
entries indicated with 100.0* for αsmooth are without the “exact-as-
possible” constraints (17) to emulate [Bommes et al. 2009].

8 Conclusion

Using a formulation unifying a number of previous formulations for
conformal maps and cross-fields, we constructed an algorithm for
global parametrization providing control over metric distortion and,
through smoothness of the associated cross-field, over the number
of cones. A single parameter makes it possible to span parametriza-
tions from highly distorted but with a minimal (in the sense of
field smoothness) number of cones, and nearly-isometric with cone
chains. We demonstrate that this trade-off is effectively unavoid-
able, as by increasing the number of cones until the cone chains are
formed we can always decrease metric distortion further.

Limitations. Just as the method of [Myles and Zorin 2012], we do
not consider additional constraints needed for quadrangulation. In
addition to the holonomy constraints we describe, it is essential to
ensure that cone parametric coordinates and seam translations are
integer multiples of the parametric quad size. Our distortion min-
imization procedure does not use this constraint. However, if the
desired quadrangulation density is sufficiently fine this constraints
does not have a strong effect on distortion. For rectangular texture
atlases, multi-chart geometry images [Carr et al. 2006], and T-mesh
surfaces [Myles et al. 2010], rounding is not essential or rounding
by small distances is sufficient.

For applications like generating coarse subdivision control meshes,
very coarse rounding of cones positions and seam translations is
clearly desired and additional effort is required to integrate this
rounding into the process.

In our current implementation we do not use the efficient greedy
mixed-integer solver based on elimination of constraints and re-
duction to a positive-definite system; because the system we solve
has per-vertex constraints, using Gaussian elimination to reduce the
number of variables leads to a dense system. At the same time, con-
structing a similar efficient solver for symmetric indefinite matrices
is possible, e.g., by replacing a Cholesky-based direct solver with

an LDLT solver, and replacing CG with a modified CG with con-
straint projection for iterative updates. Like [Bommes et al. 2009],
our metric-based system has the structure of a Laplacian system,
and we conjecture that our mixed integer system has similar local-
ity properties to benefit from the use of local iterative updates in the
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Figure 13: Comparison with [Bommes et al. 2009] on seamless parametrizations. The method of [Bommes et al. 2009] on the screw on
the top row results in a collapsed parametrization due to reasons similar to those shown in Figure 10. The percentage accompanying the
histogram indicates the fraction of triangles with distortion less than 0.3. See Table 1 for the number of cones.

Flattening our method Flattening Flatteningour method our method

0.0

0.497% 96%
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Figure 14: Comparison with [Myles and Zorin 2012] without feature-alignment: For αsmooth = 0.001, our method produces results with
similar numbers of cones and similar distortion distributions to that of [Myles and Zorin 2012] when no feature alignment constraints are
specified. The percentage accompanying the histogram indicates the fraction of triangles with distortion less than 0.2.
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Figure 15: Varying smoothness parameter αsmooth: Distortions of seamless parametrizations of the Mannequin and Aircraft models,
respectively, with statistics tabulated in Table 1. Increasing αsmooth trades distortion for fewer cones. The entries indicated with 100.0* for
αsmooth are without the “exact-as-possible” constraints (17) to generate a number of cones and histogram similar to that of [Bommes et al.
2009].

early rounding stages.

Finally, we observe that a greedy algorithm based on local crite-
ria for choosing integer variable values, although behaves well in
practice does not guarantee that the distortion is minimized and de-
pends on the choice of the spanning forest. While solving the prob-
lem exactly is likely to be intractable due to the presence of integer
variables, better and more global approximation methods may yield
higher-quality solutions.
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A Proofs

Proof of Proposition 2. Indeed, as ξ = 0 on the boundary,
dξ(t) = 0 on the boundary, so ξ has no effect on boundary align-
ment. As for any closed loop

∫

dξ(t)ds = 0 by co-closedness of
the form, it has no impact on the holonomy constraint. Finally,
∫

γi
dξ(t)ds = ξ(pj)− ξ(pi) = 0, as both of these values are zero.

The precise proof of existence and uniqueness requires a more ex-
act specification of regularity assumptions; we simply observe that
the 2-form ψ can be identified with a scalar function, and frame ro-
tation constraints around infinitesimal loops yield a Poisson equa-
tion for this function with Dirichlet boundary conditions (harmonic
form does not contribute as its Laplacian vanishes), hence it is de-
termined uniquely by contractible loop constraints and boundary
alignment. Finally, the space of harmonic forms has exactly the
right dimension to satisfy loop constraints for homology basis loops
and for alignment between boundary components. As ξ does not
contribute to satisfying the constraints, minimality implies that it is
0.

Proof of Proposition 3. If we consider any geodesic in metric g
through a point in a direction v, then it satisfies dφ(n) = κ. Recall
that for a connection 1-form ω, ω(v)ds−κds is the change in angle
between the tangent of a curve with curvature κ and tangent v, and
the frame vector e. Consider a geodesic (in metric g) in direction
v. As the conformal map preserves angles, and frame vectors e

are parallel in metric g at different points, the angle between the
frame and this geodesic has to remain constant. We conclude that
ω(v) = κ. Comparing to the formula dφ(n) = κ, and using the

fact that α(v) = ⋆α(v⊥), for any vector v (Hodge star acts as a
90-degree rotation), we get the result of the lemma.

Proof of Proposition 5. We start by reducing the problem to the
case of meshes, by considering a triangle mesh approximating the
surface both in position and normal with accuracy O(ǫ) and with
triangles of size O(ǫ). Then one can bound the total metric distor-

tion on each triangle by a O(ǫ2) function dT . The area of a triangle

is AT O(ǫ2), and the number of triangles is O(ǫ−2), leading to

EARAP
√

∑

T d
2
TAT , bounded by O(ǫ).

The mesh can be mapped to the plane isometrically, by unfolding
it along a spanning tree of all triangles, so the composition of the
map from the surface to the mesh, and from the mesh to the plane
has distortion at most O(ǫ).

Next, we subdivide the mesh so that all edges have length at most
δ; we will determine the relationship between δ and ǫ later.

Consider two sides of a cut in an isometric parametrization. We are
going to make the parametrization seamless along the cut adding
kπ/2 cones (k = 3 and k = 5) along the boundary.

π/4

π/4

Figure 16: Constructing a cone chain. Left: geometric construc-
tion of a pair of cones. Right: a cone chain

Suppose on two sides of a seam curve in the parametric domain we
have edges v1 and v2 that correspond to the same edge e on the
surface. We are going to split each triangle along the edge into sev-
eral (typically two). These edges have to be of equal length. We
are going to put one cone at the beginning of the edge, and a sec-
ond cone somewhere along the edge, so that the edge is mapped
to two two-segment lines in the parametric domain. We denote
the two segments corresponding to vi by wi1 and wi2. For the
parametrization to be seamless, the vectors corresponding to v2,
should be either parallel to vectors corresponding to v1, or differ
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Figure 17: Cross-field representations. The primary direction of each cross (red) is represented by its angle from the reference vector bijk.
(a) [Ray et al. 2008; Bommes et al. 2009]. (b) Our choice of ω induces a representation using non-conforming finite elements.

by a 90-degree rotation. Clearly, they cannot be parallel to each
other, because then the angle between v1 and v2 has to be zero or

90 degrees. We choose w21 = w
⊥
11, and w22 = w12. Repre-

senting vectors by complex numbers, we can express the relations
between different vectors as

v1 = w11 +w12, v2 = iw11 +w12. (20)

This system always has a solution that can be constructed geomet-
rically (Figure 16).

Consider the strip S of triangles along the seam. We observe that
the angle between w11 and w12 is always at least π/4, so the tri-
angle T ′ formed by vi, w1i and w2i is necessarily contained in a

circle of radius
√
2d, for any directions of v1 and v2. Consider

the strip of triangles along the seam, and cut it into three parts S1,
S2 and S3, connecting points splitting all non-seam edges incident
at the seam vertices into three. Let the boundary between S2 and
S3 be L. By subdividing seam edges if necessary we can ensure
that all triangles T ′ are contained in S1, closest to the seam. Con-
sider the strip bounded by L and the modified path along the seam,
consisting of vectors wij for all original segments.

Changing the seam lines to follow wi1 and wi2 instead of vi, can
be achieved by a local modification, entirely within S1∪S2. As the
distortion in our norm is always bounded, the total distortion is at

most O(
√

|L|δ), the area of the strip.

Note that the length of the seam cutting the mesh to a tree span-
ning all faces is proportional to the number faces in the mesh times
the bound on the face size, i.e. O(ǫ−1), giving us an estimate of

O(ǫ−1
√
δ) for the total distortion. We conclude that δ needs to

decrease faster than O(ǫ) to observe a decrease in distortion with
refinement. To balance distortion due to meshing and distortion due
to cones, we can choose δ ∼ ǫ2, yielding distortion O(ǫ) for both.

B Parametrization from the connection

Once the cones, homology loop holonomies, and alignment angles
are determined, one may proceed as in [Myles and Zorin 2012] and

1. cut the surface M along edges to a topological disk Mc so
that the seam passes through all cones [Eppstein 2003];

2. compute a cross-field satisfying the holonomy conditions ei-
ther via [Ray et al. 2008; Bommes et al. 2009; Crane et al.
2010] or from the connection ω directly; and

3. compute a parametrization f minimizing (4), where the initial
target gradient R is computed from the field.

The following sections detail steps 2 and 3.

B.1 Cross-fields from connections

Here, we show how to compute the field directly from the connec-
tion ω. While [Ray et al. 2008; Bommes et al. 2009] represent the
cross-field with angles defined per triangle, the ω we compute re-
lates cross-field degrees of freedom defined on edges interpolated
with non-conforming linear elements [Pinkall and Polthier 1993;

Polthier 2000]. Figure 17 contrasts these representations. In both
cases, cross-fields are represented in each triangle ijk as angles
with respect to a reference vector bijk, with κij = −κji ∈ (−π, π]
denoting the angle of rotation between adjacent reference vectors
bijk and bjil. An integer matching variable mij = −mji ac-
counts for the π/2 ambiguity between adjacent triangles so that
θijk + κij + π

2
mij is the representation of the cross-field from

facet ijk parallel-transported to the representation in triangle jil.
Thus, in our non-conforming representation,

βji = βij + κij +mij
π

2
. (21)

Since the connection computes the total rotation of the cross-field
along the midline,

ωj = βjk − βij . (22)

Like [Bommes et al. 2009], we begin by assigning zero matchings
mij on the edges of a dual spanning tree of Mc. Then, with β fixed
at one feature edge, (21) and (22) define the values of βij on the
rest of the surface by propagation along the dual spanning tree. The
matchings mij on the rest of M are then computed via (22).

This representation can be converted to a per-facet angle θijk =
1
3
(βij + βjk + βki) to compute the primary vector eijk =

bijk

|bijk|
cos θijk +

b
⊥

ijk

|bijk|
sin θijk of the cross-field, from which we

initialize the target Jacobian matrix

Rijk =
[

eijk e
⊥
ijk

]T

on each facet for the following section.

B.2 Computing an ARAP parametrization

As in [Bommes et al. 2009; Myles and Zorin 2012], the parame-
terization f is discretized using linear finite elements with (u, v)
degrees of freedom on the vertices of Mc. Recall from Section 3
and Figure 2 that each point p1 = p2 on the seam is assigned two
(or more) parametric values related by f(p2) = rf(p1) + t. On
each seam edge ij, the seam rotation rij = Rot(mijπ/2) is de-
fined by the matching mij , and the parametrization f is computed
from the prescribed gradients R by minimizing

1

2

∫

M

‖∇f −R‖2 (23)

under the seam constraints above, which are linear in f . For quad-
rangulations, grid lines are made continuous across seams (cf. Fig-
ure 2) by rounding all t and cone (u, v) values to integers using the
mixed integer solver of [Bommes et al. 2009]. Scaling R globally
allows for control over the grid resolution.

[Myles and Zorin 2012] further reduced the isometric distortion by
minimizing the ARAP energy (4):

EARAP =
1

2

∫

M

min
R∈SO(2)

‖∇f −R‖2



using the local/global alternating optimization of [Liu et al. 2008]
which iterates the following two steps until convergence.

1. Local step: Fix f . In each triangle, use a local frame to write
∇f as a 2× 2 matrix [ a b

c d ], and compute the closest rotation

R =
B

√

det(B)
, where B =

1

2

[

a+ d b− c
c− b a+ d

]

,

taking care to leave the R unchanged on triangles adjacent to
features.

2. Global step: Fix R and solve (23) for f as before.
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