

A Little History

- o **Bernstein** polynomials form the basis of the Bézier representation
- o Bézier representation extended to surfaces by **Paul de Casteljau** (physicist, mathematician working for Citroen)
- o Popularized by Pierre Bézier (automotive engineer at Renault)

Pierre Bézier

Photos from http://en.wikipedia.org/wiki/Sergei_Natanovich_Bernstein http://www.photoshopessentials.com/basics/pen-tool-selections/

Polynomial functions and parametric curves

t

Power series representation: $f(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 + a_4 t^4 + ... + a_d t^d$ *d* is the degree of the curve *f(t)* is defined by *d+1* coefficients *a*₀, *a*₁, ..., *a*_d y=f(t)

Graph of $f(t) = t^2$

Graphs of functions f(t) are limited in the types of curves they can produce. The curves always go left to right. For example, it cannot produce a circle.

We can describe a more general class of curves using the *parametric representation* (x(t), y(t)).

Why are polynomials useful?

Very easy to evaluate! We know how to multiply and add (something that computers can do very efficiently).

Evaluate f(0.14) in the following cases:

- $f(t) = t^3 + 3t$ \checkmark 3 mult and 1 add
- $f(t) = \sqrt{t}$
- $f(t) = \cos(t)$
- $f(t) = e^t$

Uses

- o Many real-world constraints, e.g. **(squared) distances**, are polynomial - lots of work done in solving system of polynomial constraints
- o Many **physical systems** are (rational) polynomials o missle trajectory (parabola) o gravity, charge potential
- o **Approximations** to smooth functions o approximate cos and sin as above o approximate smooth functions on surfaces

o Cryptography

o chassis of cars o outer hull of planes

o fonts (almost everything on this page!) $2 \rightarrow 2 \rightarrow 2$ o vector graphics (e.g. SVG)

Courtesy of yves_guillou and the Open Clip Art Library http://www.openclipart.org/detail/sport-car-by-yves_guillou-21763

Why not use power representation?

What's wrong with the power-series representation?

Linear combinations Linear combination w of a_1, a_2, a_3, a_4 with weights b_1, b_2, b_3, b_4 $w = a_1b_1 + a_2b_2 + a_3b_3 + a_4b_4$ (Here w is also a linear combination of b_1, b_2, b_3, b_4)

Affine combinations are geometrically meaningful, independent of the location of the original points.

Convex combinations have the additional property that the result in is in the **convex hull**.

Bézier representation

Cubic (degree 3) polynomial in **Bézier form** with coefficients a_1, a_2, a_3, a_4 is the function

 $f(t) = a_0(1-t)^3 + a_13(1-t)^2t + a_23(1-t)t^2 + a_3t^3$

Typically restricted to $0 \le t \le 1$ (not necessary)

Properties:

o Interpolates the end points

o The curve is tangent to the control polygon at each end

o **Affine invariant:** The Bézier basis $(1-t)^3 \quad 3(1-t)^2t \quad 3(1-t)t^2 \quad t^3$ adds up to 1 for *any t*. How would you prove this? $(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$ $1 = 1^3 = ((1-t)+t)^3 = (1-t)^3 + 3(1-t)^2t + 3(1-t)t^2 + t^3$

So, f(t) is an affine combination of a_1, a_2, a_3, a_4 $f(t) = a_0(1-t)^3 + a_13(1-t)^2t + a_23(1-t)t^2 + a_3t^3$

o **Convex hull property:** The Bézier basis is positive when $0 \le t \le 1$ because $(1-t) \ge 0$ and $t \ge 0$

- o Fun and **intuitive** way to manipulate polynomials
- o Important and useful geometric properties
 o curve defined by a control polygon (exaggeration of shape)
 o shape preserving
 - o **numerically-stable** to compute between 0 and 1 (consequence of the convex hull property)

o Used everywhere, from fonts, vector graphics, CAD

o Can be further **generalized** to represent and manipulate piecewise-polynomials efficiently o B-spline o NURBS