B(asis)-Splines

Ashish Myles CISE, UF

Splines

- Piecewise polynomial
- More flexible than single polynomials
 - can have finite support
 - can be periodic
- Degree d splines typically C^{d1} continuity

Some polynomial representations

Polynomials

- Power / Taylor series
- Newton polynomials
- Lagrange polynomials
- Hermite polynomials
- Bézier (very special case of B-spline)

Splines

- Box spline (for curves, same as uniform B-spline)
- B-spline

B-spline examples

- http://www.cs.technion.ac.il/~cs234325/Applets/applets/bspline/GermanApplet.html
- http://www.engin.umd.umich.edu/CIS/course.des/cis577/projects/BSP/welcome.html
- http://www.cs.uwaterloo.ca/~r3fraser/splines/bspline.html
- http://www.doc.ic.ac.uk/~dfg/AndysSplineTutorial/BSplines.html

Polynomials as linear combinations

• Power basis $\{1, t, t^2, \dots, t^d\}$

$$p(t) = \sum_{i=0}^{d} c_i t^i$$

• Taylor basis $|1,(t-t_0),(t-t_0)^2,...,(t-t_0)^d|$

$$p(t) = \sum_{i=0}^{d} c_i (t - t_0)^i$$

• Bézier basis
$$\left[(1-t)^d, d(1-t)^{d-1}t, \dots, \left| \frac{d}{i} \right| (1-t)^{d-i}t^i, \dots, t^d \right]$$

terms in the binomial expansion of $((1-t)+t)^d$ (=1)

$$p(t) = \sum_{i=0}^{d} c_i \binom{d}{i} (1-t)^{d-i} t^i$$

Splines as linear combinations

A linear combination of spline basis functions

- Defined by
 - k knots t_i
 - non-decreasing sequence specifying domain
 - determines basis functions (hence continuity and ranges)
 - n coefficients c_i
 - coefficients with which the basis functions are multiplied
 - degree d automatically determined: k = n + d + 1

B-spline basis

Basis function:

$$N_i^0(t) = \begin{bmatrix} 1 & \text{if } t \in [t_i, t_{i+1}] \\ 0 & \text{otherwise} \end{bmatrix}$$

$$N_i^d(t) = \frac{t - t_i}{t_{i+d} - t_i} N_i^{d-1}(t) + \frac{t_{i+d+1} - t}{t_{i+d+1} - t_{i+1}} N_{i+1}^{d-1}(t)$$

- Non-neg. & finite support
- Shifts add up to 1 in their overlap
- (Uniform B-splines <=> uniformly spaced knots)

Spline in B-spline form

• Curve (degree d): $p(t) = \sum_{i} c_i N_i^d(t)$

- Example: $c_i = [1, 3, 2, -1]$ (y-coord only)
- Greville abscissa:
 natural x-coord for c_i

$$t_i^* = \frac{1}{d} \sum_{j=i+1}^{i+d} t_j$$

• k = n + d + 1 knots

Geometric Properties

• Curve (degree d): $p(t) = \sum_{i} c_{i} N_{i}^{d}(t)$ sum to 1, non-negative

- Affine invariance: $C_i' = A(C_i) <=> p'(t) = A(p(t))$
- Convex hull property: curve lies within $CH(c_i)$

Variation diminishing property

 No line intersects the spline more times than it intersects the control polygon.

 i.e. The curve will not wiggle more than the control polygon.

An alternative to interpolation

 Interpolating samples suffers from the Gibb's phenomenon

 Treating samples as coefficients has no such problems – curve can't wiggle more than coefficients.

Examples of non-uniform splines

 Knot sequence can be denser in areas needing more degrees of freedom.

Decreasing inherent continuity

Knot multiplicity

 Repeating a knot m times decreases the inherent continuity of the basis functions

Evaluation – deBoor's Algorithm

• Evaluate at *t* = 4.5 by repeated knot insertion without changing the underlying function.

Convergence under knot insertion

• Repeated uniform knot insertion converges to function as fast as $O(h^2)$, with h = knot width.

Derivatives

- Compute using divided differences
 - deg 1 lower
 - continuity 1 lower
 - domain the same

$$a_i = \frac{d}{t_{i+d+1} - t_{i+1}} |c_{i+1} - c_i|$$

Matlab spline toolbox

- Written by deBoor himself
- I used for my figures:
 - spmak, spapi create/interpolate a B-spline
 - fnplt plot the B-spline
 - fnrfn do knot insertion
 - fnder, fnint differentiation and integration
- It's well documented and comes with tutorials and demos

Summary

- The B-spline form is
 - geometrically intuitive
 - numerically robust
 - easy to differentiate
 - easy to make discontinuous
 - very, very knotty
- Matlab spline toolbox

More terms to look up

- Tensor-product B-splines
 - for surfaces, volumes
- Bézier
 - tensor-product (special case of B-splines)
 - total-degree (triangular) no good B-spline equivalent
- Blossoms
 - Excellent theoretical tool
 - Inefficient for implementation, though

References

- Curves and Surfaces for CAGD
 - Gerald Farin

- Bézier and B-Spline Techniques
 - Hartmut Prautzsch, Wolfgang Boehm, and Marco Paluszny
- Matlab spline toolbox documentation & demos